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Abstract: 
 It is very important to determine microstructure parameters of consolidated ceramic 
samples, because it opens new frontiers for further microelectronics miniaturization and 
integrations. Therefore, controlling, predicting and designing the ceramic materials’ 
properties are the objectives in ceramic materials consolidating process, within the science of 
sintering. In order to calculate the precise values of desired microstructure parameter at the 
level of the grains’ coating layers based on the measurements on the bulk samples, we applied 
the artificial neural networks, as a powerful mathematical tool for mapping input-output data. 
Input signals are propagated forward, as well as the adjustable coefficients that contribute 
the calculated output signal, denoted as error, which is propagated backwards and replaced 
by examined parameter. In our previous research, we used neural networks to calculate 
different electrophysical parameters at the nano level of the grain boundary, like relative 
capacitance, breakdown voltage or tangent loss, and now we extend the research on sintered 
material’s density calculation. Errors on the network output were substituted by different 
consolidated samples density values measured on the bulk, thus enabling the calculation of 
precise material’s density values between the layers. We performed the neural network 
theoretical experiments for different number of neurons in hidden layers, according to 
experimental ceramics material’s density of ρ=5.4x103[kg/m3], but it opens the possibility for 
neural networks application within other density values, as well.  
Keywords: Neural network; Ceramics materials; Sintering; Density; Error. 
 
 
 
1. Introduction 
 
 Back propagation neural network (BP) is a type of neural network where the output 
signal - error is propagated backwards, from output to input, spreading throughout the whole 
network, which allows the calculation of error as the contribution of all network elements [1-
4]. The desired input – output mapping is obtained by the neural network training process, 
resulting in error decrease. Adjustable coefficients, called weights, influence the error value, 
so this training procedure is applied to adjust these parameters. At the beginning, weights are 
set to random values, thus the output error is significant, and then by adjusting the coefficients 
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towards reducing the error, which implies numerous repeating, all input-output data are 
mapped within the domain of predefined error.  
Artificial neural network (ANN) is comprised of neurons that receive input signals, forming 
input layer, and neurons that generate output signal, forming output layer. Between these two 
layers, there are different numbers of neurons organized in one or more hidden layers (Fig. 1). 
 

 
 

Fig. 1. An example of a neural network. 
 
The micro ceramic material can be observed as a structure constitutes of multiple thin layer 
coatings around the grains that are mutually interconnected. If we observe the sintered 
material’s structure as a neural network, with grains of the ceramic material represented by 
network neurons, we can calculate any parameter at the submicron level in thin layers 
between the grains, based on the experimentally obtained relating characteristics at the bulk 
sample’s surface. ANN method is applied by splitting the bulk sample into equally distant 
layers, whereby the more layers present; the more precise results are obtained. The error that 
occurs on the network output, which is the difference between desired and actual output, is 
replaced by the measured parameter and spread backwards.  
 In accordance with our previous research, where we applied this method for 
calculating various ceramics microelectronic characteristics [5-8], we now proceed with the 
density calculation [9-12] within consolidated BaTiO3-ceramic samples for different 
consolidation parameters, like sintering temperature, because the consolidation process 
thermal conditions are very important for material's density. 
 The network error is a general, nominally useful signal, because any ceramic 
material’s parameter (including density) could be defined as an output error. The lower 
calculated errors mean that we get more precise values of the examined parameter at the grain 
boundaries level. Also, it is very important to calculate the error distribution regarding all 
hidden layer nodes. Therefore, summarizing of all network nodes errors and calculating 
number of nodes related distribution has to be done, in order to obtain deviations regarding 
the starting error. Summarizing of error values regarding layers and calculating number of 
nodes related distribution for layers, has to be performed, as well. 
 
 
2. Materials and Experimental Procedures 
 
 In this experiment, we applied process to high purity BaTiO3 Murata powder [13], 
with mean grain size < 2 μm, and 99.9 % purity. Four steps in ceramic powder preparation 
process (for sintering consolidation of BaTiO3 - ceramics samples) were done: measuring and 
forming starting powders mixture; wet mixing and spraying; molding and process control; and 
preparation, samples sintering and process control. Duration of homogenization of organic 
binders in powder mixture was about 48 h. The mass, processed into a mill with a balls and 
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water, was transferred by a membrane pump and dried. So, we obtained a desired powder 
granulation. We tested the material density every hour, using a special vessel and we applied 
vibrating sieve afterwards. Diameters of powder particles were 10-130 μm.  
 We analyzed various sintering temperatures (1190-1370oC), length of time (2-3 h) 
and impact of different additives (CeO2, MnCO3). But in this analysis, we were focused on 
relation with pressures of 86 MPa and density. 
 We created several different neural networks with two hidden layers, and since the 
dimensions of the ceramic samples are ℎ = (0,57 ± 0,05) ∙ 10−3𝑚𝑚,𝑑𝑑 = 16,5 ∙ 10−3𝑚𝑚, we 
can calculate the distance between layers. In this research, the output error was replaced by 
density values experimentally obtained during the sintering process, and due to spreading it 
through the whole network, calculation of intergranular density was successfully performed. 
 
Tab. I Extract of experimental results. 

sample type P [MPa] 𝜌𝜌 [kg/m3] 

BaTiO3 – ceramics with basic mixture 86 5.4x103 
BaTiO3 -ceramics: composition 0.1%CeO2+0.14%MnCO3 86 3.2x103 

BaTiO3 -ceramics: composition 0.1%CeO2 86 3.4x103 
 
In further analysis and theoretical experiment, we will use just the data from the first raw of 
the Tab. I. 𝜌𝜌=5.4x103[kg/m3]. 
 
 
3. Results and Discussion 
 
 Twelve different two-layer neural networks were developed, with n=6,8,10 neurons 
in the first hidden layer and m=2,4,6,8,10 neurons in the second hidden layer. Density in 
hidden layers (𝜌𝜌), as well as errors calculated during the training process for each example, 
will be discussed.  
 For a neural network with 6 neurons in the 1st hidden layer and 2 neurons in the 2nd 
hidden layer (Fig. 2.), density 𝜌𝜌 and errors calculated in the training process are presented in 
Tab. II. 
 

 
 

Fig. 2. Neural network with 6 neurons in the 1st hidden layer and 2 neurons in the 2nd hidden 
layer. 
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Tab. II Density 𝛒𝛒 and calculated errors for a neural network with 6 neurons in the 1st hidden 
layer and 2 neurons in the 2nd hidden layer. 

 Density ρ Calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 2nd hidden layer output 

neuron 
1 167 534 5400 -0.01403 -0.04491 0.453992 

2 183 488  -0.01539 -0.04103  

3 212   -0.01786   

4 157   -0.01319   

5 111   -0.0093   

6 66   -0.00553   

 
For a neural network with 6 neurons in the 1st hidden layer and 4 neurons in the 2nd hidden 
layer (Fig. 3.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab. III. 
 

 
 
Fig. 3. Neural network with 6 neurons in the 1st hidden layer and 4 neurons in the 2nd hidden 

layer. 
 
Tab. III Density 𝛒𝛒 and calculated errors for a neural network with 6 neurons in the 1st hidden 
layer and 4 neurons in the 2nd hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 12 233 5400 0.001788 0.03584 0.82996 
2 144 124  0.022182 0.01907  
3 80 90  0.012296 0.013913  
4 100 546  0.015452 0.083917  
5 167   0.02568   
6 107   0.016528   

 
For a neural network with 6 neurons in each of two hidden layers (Fig. 4.), density 𝜌𝜌 and 
errors calculated in the training process are presented in Tab. IV. 
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Fig. 4. Neural network with 6 neurons in each hidden layer. 
 

Tab. IV Density ρ and calculated errors for a neural network with 6 neurons in each hidden 
layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 146 62 5400 0.023166 0.00987 0.854657 
2 99 31  0.015662 0.004984  
3 54 77  0.008554 0.012138  
4 119 86  0.018826 0.013589  
5 77 345  0.012209 0.054632  
6 147 258  0.023209 0.040835  

 
For a neural network with 8 neurons in the 1st hidden layer and 2 neurons in the 2nd hidden 
layer (Fig. 5.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab. V. 
 

 
 
Fig. 5. Neural network with 8 neurons in the 1st hidden layer and 2 neurons in the 2nd hidden 

layer. 
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Tab. V Density 𝛒𝛒 and calculated errors for a neural network with 8 neurons in the 1st hidden 
layer and 2 neurons in the 2nd hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 13 86 5400 0.002562 0.016469 1.033113 
2 17 -8.6  0.003207 -0.00165  
3 5   0.00105   
4 16   0.002997   
5 17   0.00329   
6 20   0.003841   
7 5   10.000948   
8 10   0.001996   

 
For a neural network with 8 neurons in the 1st hidden layer and 4 neurons in the 2nd hidden 
layer (Fig. 6.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab. VI. 
 

 
 
Fig. 6. Neural network with 8 neurons in the 1st hidden layer and 4 neurons in the 2nd hidden 

layer. 
 
Tab. VI Density 𝛒𝛒 and calculated errors for a neural network with 8 neurons in the 1st hidden 
layer and 4 neurons in the 2nd hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 183 763 5400 -0.00941 -0.03926 0.277903 
2 248 259  -0.01278 -0.01333  
3 397 267  -0.02044 -0.01376  
4 280 915  -0.01442 -0.04708  
5 50   -0.0026   
6 299   -0.01538   
7 217   -0.01117   
8 101   -0.00522   
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For a neural network with 8 neurons in the 1st hidden layer and 6 neurons in the 2nd hidden 
layer (Fig. 7.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab.VII. 
 

 
 
Fig. 7. Neural network with 8 neurons in the 1st hidden layer and 6 neurons in the 2nd hidden 

layer. 
 
Tab. VII Density 𝛒𝛒 and calculated errors for a neural network with 8 neurons in the 1st hidden 
layer and 6 neurons in the 2nd hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 100 160 5400 0.004279 0.00685 0.231791 
2 245 289  0.010532 0.012422  
3 106 201  0.00456 0.008261  
4 197 227  0.008476 0.009762  
5 203 278  0.008735 0.011928  
6 138 264  0.005924 0.011353  
7 210   0.009023   
8 225   0.009646   

 
For a neural network with 8 neurons per each hidden layer (Fig. 8.), density 𝜌𝜌 and errors 
calculated in the training process are presented in Tab. VIII. 
 

 
 

Fig. 8. Neural network with 8 neurons pear each hidden layer. 
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Tab. VIII Density ρ and calculated errors for a neural network with 8 neurons per each 
hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 89 -36 5400 0.018174 -0.00718 1.103968 
2 38 198  0.007725 0.040433  
3 -23 -60  -0.00461 -0.01225  
4 -27 -250  -0.00561 -0.05107  
5 2.4 6.7  0.000492 0.001369  
6 18 391  0.003766 0.079895  
7 -24 -297  -0.00493 -0.06065  
8 2.8 163  0.000567 0.033305  

 
For a neural network with 10 neurons in the 1st hidden layer and 2 neurons in the 2nd hidden 
layer (Fig. 9.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab. IX. 
 

 
 
Fig. 9. Neural network with 10 neurons in the 1st hidden layer and 2 neurons in the 2nd hidden 

layer. 
 
Tab. IX Density 𝛒𝛒 and calculated errors for a neural network with 10 neurons in the 1st 
hidden layer and 2 neurons in the 2nd hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 26 191 5400 0.00461 0.033537 0.941893 
2 10 86  0.001767 0.015042  
3 31   0.005505   
4 7   0.001252   
5 50   0.00885   
6 19   0.003371   
7 27   0.004735   
8 20   0.003593   
9 40   0.007073   

10 48   0.008367   
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For a neural network with 10 neurons in the 1st hidden layer and 4 neurons in the 2nd hidden 
layer (Fig. 10.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab. X. 
 

 
Fig. 10. Neural network with 10 neurons in the 1st hidden layer and 4 neurons in the 2nd 

hidden layer. 
 
Tab. X Density 𝛒𝛒 and calculated errors for a neural network with 10 neurons in the 1st hidden 
layer and 4 neurons in the 2nd hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 96 231 5400 -0.00834 -0.02009 0.469675 
2 93 151  -0.00807 -0.01315  
3 112 187  -0.00991 -0.01627  
4 70 259  -0.006 -0.02257  
5 140   -0.01216   
6 62   -0.00537   
7 99   -0.0086   
8 95   -0.0083   
9 103   -0.00892   
10 116   -0.01007   

 
For a neural network with 10 neurons in the 1st hidden layer and 6 neurons in the 2nd hidden 
layer (Fig. 11.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab. 
XI. 

 
Fig. 11. Neural network with 10 neurons in the 1st hidden layer and 6 neurons in the 2nd 

hidden layer. 
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Tab. XI Density 𝛒𝛒 and calculated errors for a neural network with 10 neurons in the 1st 
hidden layer and 6 neurons in the 2nd hidden layer. 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 25 54 5400 -0.00502 0.011114 1.102478 
2 13 82  -0.00274 0.016747  
3 30 60  0.0062 0.01213  
4 6 22  0.001284 -0.00441  
5 6 36  -0.00128 -0.00732  
6 9 178  -0.00179 -0.03631  
7 1   -0.00027   
8 9   0.001758   
9 3   -0.00072   
10 5   0.000972   

 
For a neural network with 10 neurons in the 1st hidden layer and 8 neurons in the 2nd hidden 
layer (Fig. 12.), density 𝜌𝜌 and errors calculated in the training process are presented in Tab. 
XII. 

 
Fig. 12. Neural network with 10 neurons in the 1st hidden layer and 8 neurons in the 2nd 

hidden layer. 
 
Tab. XII Density 𝛒𝛒 and calculated errors for a neural network with 10 neurons in the 1st 
hidden layer and 8 neurons in the 2nd hidden layer. 
 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 44 0.1 5400 0.006593 0.000244 0.814185 
2 47 44  0.007172 0.006576  
3 65 -44  30.009782 -0.00668  
4 37 95  0.005601 0.014368  
5 7 -35  0.001046 -0.00531  
6 9 40  0.001348 0.005974  
7 48 175  0.007255 0.026401  
8 31 26  0.004759 0.00394  
9 64   0.00968   
10 23   0.003473   
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For a neural network with 10 neurons per each of two hidden layers (Fig. 13.), density 𝜌𝜌 and 
errors calculated in the training process are presented in Tab. XIII. 

 

 
 

Fig. 13. Neural network with 10 neurons per each hidden layer. 
 
Tab. XIII Density ρ and calculated errors for a neural network with 10 neurons per each 
hidden layer. 

 density ρ calculated error 

neuron 1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1st hidden 
layer 

2nd hidden 
layer 

output 
neuron 

1 30 83 5400 0.005439 0.014923 0.9711 
2 16 281  -0.0029 0.050599  
3 6 264  0.001052 -0.04746  
4 17 151  0.003093 0.027248  
5 21 94  0.003788 0.017005  
6 4 3  -0.00082 -0.0005  
7 25 105  0.004431 0.018842  
8 27 113  0.004794 -0.02038  
9 9 184  -0.00161 -0.03316  
10 48 4  0.008662 -0.0008  

 
Based on the theoretical experiment results presented in Fig. 2-13, we demonstrated 
successful application of the neural network method on samples’ surface density calculation, 
as an original novelty with many advantages in this field [14-22]. 
 
 
4. Conclusion 
 
 Determining microstructure parameters of consolidated ceramic samples is very 
important, because it opens new frontiers for further microelectronics miniaturization and 
integrations. In this paper, back propagation neural network is applied, to calculate density 
values in the coating layers between the micro ceramics material’s grains. Calculation is 
based on experimental density measurements on the bulk sample for 𝝆𝝆=5.4x103[kg/m3]. 
This is new and innovative approach in calculation and determination of characteristics of 
the materials, at the intergranular nano level. In order to calculate the precise values of 
desired parameter, based on the measurements on the bulk samples, we applied the 
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artificial neural networks, as a powerful mathematical tool for mapping input-output data. 
Unlike mathematical a method which provides statistical parameters’ values within the 
whole sintered sample, BP method enables the calculation of precise density values at the 
material’s grains and pores boundary level. In this paper is assumed that neural network 
nodes present ceramic grains. In that case increase of neural network complexity should 
provide better density estimation. One can notice that better uniformity of grains density is 
achieved as neural network complexity rises.  
 This opens new perspectives in further miniaturization of micro ceramics 
materials and also provides advanced technology development, within the science of 
sintering. The application of BP neural network also opens new possibilities for very 
precisely predicting and designing the ceramic materials properties and desired 
microstructure density [23], at the nano level. Those results are natural continuation of the 
results from previous papers in this area. They are also a new path to a variety of 
interesting possibilities for further research.  
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Сажетак: Одређивање параметара микроструктуре консолидованих керамичких 
узорака је веома важно, јер то отвара нове могућности за даљу минијатуризацију и 
интеграције. Према томе, контрола, предвиђање и пројектовање својстава 
керамичких материјала су циљеви у процесу консолидације керамичких материјала, у 
оквиру науке о синтеровању. Да бисмо израчунали прецизне вредности жељеног 
микроструктурног параметра на нивоу слојева зрна, на основу мерења на масовним 
узорцима, применили смо вештачке неуронске мреже, као моћан математички алат за 
мапирање улазно-излазних података. Улазни сигнали се пропагирају напред, као и 
подесиви коефицијенти који доприносе израчунатом излазном сигналу, означеном као 
грешка, који се шири уназад и замењује испитиваним параметром. У нашем 
претходном истраживању користили смо неуронске мреже за израчунавање 
различитих електрофизичких параметара на нано нивоу границе зрна, као што су 
релативни капацитет, напон пробоја или тангентни губитак, а сада проширујемо 
истраживање на прорачун густине синтерованог материјала. Грешке на излазу мреже 
су замењене различитим вредностима густине консолидованих узорака измереним на 
маси, чиме је омогућено израчунавање прецизних вредности густине материјала 
између слојева. Изводили смо теоријске експерименте са неуронским мрежама за 
различит број неурона у скривеним слојевима, према густини експерименталног 
керамичког материјала од ρ=5,4x103[kg/m3], али то отвара могућност примене 
неуронских мрежа и у оквиру других вредности густине. 
Кључне речи: неуронска мрежа, керамички материјали, синтеровање, густина, 
грешка. 
 



B. M. Randjelović et al.,/Science of Sintering, 54(2024)425-438 
___________________________________________________________________________ 

 

438 
 

© 2022 Authors. Published by association for ETRAN Society. This article is an open access 
article distributed under the terms and conditions of the Creative Commons — Attribution 4.0 
International license (https://creativecommons.org/licenses/by/4.0/).  
 

 
 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	/

