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Abstract:

It is very important to determine microstructure parameters of consolidated ceramic
samples, because it opens new frontiers for further microelectronics miniaturization and
integrations. Therefore, controlling, predicting and designing the ceramic materials’
properties are the objectives in ceramic materials consolidating process, within the science of
sintering. In order to calculate the precise values of desired microstructure parameter at the
level of the grains’ coating layers based on the measurements on the bulk samples, we applied
the artificial neural networks, as a powerful mathematical tool for mapping input-output data.
Input signals are propagated forward, as well as the adjustable coefficients that contribute
the calculated output signal, denoted as error, which is propagated backwards and replaced
by examined parameter. In our previous research, we used neural networks to calculate
different electrophysical parameters at the nano level of the grain boundary, like relative
capacitance, breakdown voltage or tangent loss, and now we extend the research on sintered
material’s density calculation. Errors on the network output were substituted by different
consolidated samples density values measured on the bulk, thus enabling the calculation of
precise material’s density values between the layers. We performed the neural network
theoretical experiments for different number of neurons in hidden layers, according to
experimental ceramics material’s density of p=>5.4x10°[kg/m?], but it opens the possibility for
neural networks application within other density values, as well.

Keywords: Neural network; Ceramics materials; Sintering; Density; Error.

1. Introduction

Back propagation neural network (BP) is a type of neural network where the output
signal - error is propagated backwards, from output to input, spreading throughout the whole
network, which allows the calculation of error as the contribution of all network elements [1-
4]. The desired input — output mapping is obtained by the neural network training process,
resulting in error decrease. Adjustable coefficients, called weights, influence the error value,
so this training procedure is applied to adjust these parameters. At the beginning, weights are
set to random values, thus the output error is significant, and then by adjusting the coefficients

“) Corresponding author: bane@elfak.ni.ac.rs


https://doi.org/10.2298/SOS2204425R

426 B. M. Randjelovi¢ et al.,/Science of Sintering, 54(2024)425-438

towards reducing the error, which implies numerous repeating, all input-output data are
mapped within the domain of predefined error.

Artificial neural network (ANN) is comprised of neurons that receive input signals, forming
input layer, and neurons that generate output signal, forming output layer. Between these two
layers, there are different numbers of neurons organized in one or more hidden layers (Fig. 1).
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Fig. 1. An example of a neural network.

The micro ceramic material can be observed as a structure constitutes of multiple thin layer
coatings around the grains that are mutually interconnected. If we observe the sintered
material’s structure as a neural network, with grains of the ceramic material represented by
network neurons, we can calculate any parameter at the submicron level in thin layers
between the grains, based on the experimentally obtained relating characteristics at the bulk
sample’s surface. ANN method is applied by splitting the bulk sample into equally distant
layers, whereby the more layers present; the more precise results are obtained. The error that
occurs on the network output, which is the difference between desired and actual output, is
replaced by the measured parameter and spread backwards.

In accordance with our previous research, where we applied this method for
calculating various ceramics microelectronic characteristics [5-8], we now proceed with the
density calculation [9-12] within consolidated BaTiOs-ceramic samples for different
consolidation parameters, like sintering temperature, because the consolidation process
thermal conditions are very important for material's density.

The network error is a general, nominally useful signal, because any ceramic
material’s parameter (including density) could be defined as an output error. The lower
calculated errors mean that we get more precise values of the examined parameter at the grain
boundaries level. Also, it is very important to calculate the error distribution regarding all
hidden layer nodes. Therefore, summarizing of all network nodes errors and calculating
number of nodes related distribution has to be done, in order to obtain deviations regarding
the starting error. Summarizing of error values regarding layers and calculating number of
nodes related distribution for layers, has to be performed, as well.

2. Materials and Experimental Procedures

In this experiment, we applied process to high purity BaTiO; Murata powder [13],
with mean grain size < 2 pm, and 99.9 % purity. Four steps in ceramic powder preparation
process (for sintering consolidation of BaTiOj; - ceramics samples) were done: measuring and
forming starting powders mixture; wet mixing and spraying; molding and process control; and
preparation, samples sintering and process control. Duration of homogenization of organic
binders in powder mixture was about 48 h. The mass, processed into a mill with a balls and
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water, was transferred by a membrane pump and dried. So, we obtained a desired powder
granulation. We tested the material density every hour, using a special vessel and we applied
vibrating sieve afterwards. Diameters of powder particles were 10-130 um.

We analyzed various sintering temperatures (1190-1370°C), length of time (2-3 h)
and impact of different additives (CeO,, MnCQg). But in this analysis, we were focused on
relation with pressures of 86 MPa and density.

We created several different neural networks with two hidden layers, and since the
dimensions of the ceramic samples are h = (0,57 4+ 0,05) - 103m,d = 16,5 - 1073m, we
can calculate the distance between layers. In this research, the output error was replaced by
density values experimentally obtained during the sintering process, and due to spreading it
through the whole network, calculation of intergranular density was successfully performed.

Tab. | Extract of experimental results.

sample type P[MPa] | p [kg/m’]
BaTiO3; — ceramics with basic mixture 86 5.4x10°
BaTiO; -ceramics: composition 0.1%Ce0,+0.14%MnCO; 86 3.2x10°
BaTiO; -ceramics: composition 0.1%CeO, 86 3.4x10°

In further analysis and theoretical experiment, we will use just the data from the first raw of
the Tab. I. p=5.4x10°[kg/m°].

3. Results and Discussion

Twelve different two-layer neural networks were developed, with n=6,8,10 neurons
in the first hidden layer and m=2,4,6,8,10 neurons in the second hidden layer. Density in
hidden layers (p), as well as errors calculated during the training process for each example,
will be discussed.

For a neural network with 6 neurons in the 1% hidden layer and 2 neurons in the 2"
hidden layer (Fig. 2.), density p and errors calculated in the training process are presented in
Tab. II.

2
1-10 layer: | 1| 2
* nodes | 6 | 2
1- 10
1- 102 3- 102

Fig. 2. Neural network with 6 neurons in the 1 hidden layer and 2 neurons in the 2" hidden
layer.
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Tab. 11 Density p and calculated errors for a neural network with 6 neurons in the 1% hidden
layer and 2 neurons in the 2™ hidden layer.

Density p Calculated error
o | T | Tt et | T g v e | e
1 167 534 5400 -0.01403 -0.04491 0.453992
2 183 488 -0.01539 -0.04103
3 212 -0.01786
4 157 -0.01319
5 111 -0.0093
6 66 -0.00553

For a neural network with 6 neurons in the 1% hidden layer and 4 neurons in the 2" hidden
layer (Fig. 3.), density p and errors calculated in the training process are presented in Tab. I11.
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Fig. 3. Neural network with 6 neurons in the 1 hidden layer and 4 neurons in the 2" hidden
layer.

Tab. 111 Density p and calculated errors for a neural network with 6 neurons in the 1* hidden
layer and 4 neurons in the 2" hidden layer.

density p calculated error
neuron 1" hidden | 2" hidden | output | 1%hidden | 2" hidden | output
layer layer neuron layer layer neuron
1 12 233 5400 0.001788 | 0.03584 0.82996
2 144 124 0.022182 | 0.01907
3 80 90 0.012296 | 0.013913
4 100 546 0.015452 | 0.083917
5 167 0.02568
6 107 0.016528

For a neural network with 6 neurons in each of two hidden layers (Fig. 4.), density p and
errors calculated in the training process are presented in Tab. V.
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Fig. 4. Neural network with 6 neurons in each hidden layer.
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Tab. IV Density p and calculated errors for a neural network with 6 neurons in each hidden

layer.
density p calculated error
Seuron 1" hidden | 2" hidden | output | 1% hidden | 2" hidden output
layer layer neuron layer layer neuron
1 146 62 5400 0.023166 0.00987 0.854657
2 99 31 0.015662 | 0.004984
3 54 77 0.008554 | 0.012138
4 119 86 0.018826 | 0.013589
5 77 345 0.012209 | 0.054632
6 147 258 0.023209 | 0.040835

For a neural network with 8 neurons in the 1* hidden layer and 2 neurons in the 2nd hidden
layer (Fig. 5.), density p and errors calculated in the training process are presented in Tab. V.
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Fig. 5. Neural network with 8 neurons in the 1% hidden layer and 2 neurons in the 2" hidden
layer.
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Tab. V Density p and calculated errors for a neural network with 8 neurons in the 1* hidden
layer and 2 neurons in the 2™ hidden layer.

density p calculated error
ceuron | L hidden 2" hidden | output 1" hidden | 2" hidden | output
layer layer neuron layer layer neuron
1 13 86 5400 0.002562 0.016469 | 1.033113
2 17 -8.6 0.003207 -0.00165
3 5 0.00105
4 16 0.002997
5 17 0.00329
6 20 0.003841
7 5 10.000948
8 10 0.001996

For a neural network with 8 neurons in the 1% hidden layer and 4 neurons in the 2" hidden
layer (Fig. 6.), density p and errors calculated in the training process are presented in Tab. VI.

layer: 1|2
nodes | 8 | 4

3,6-10°
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Fig. 6. Neural network with 8 neurons in the 1% hidden layer and 4 neurons in the 2" hidden
layer.

Tab. VI Density p and calculated errors for a neural network with 8 neurons in the 1* hidden
layer and 4 neurons in the 2" hidden layer.

density p calculated error
neuron 1" hidden | 2" hidden | output 1* hidden 2" hidden output
layer layer neuron layer layer neuron
1 183 763 5400 -0.00941 -0.03926 0.277903
2 248 259 -0.01278 -0.01333
3 397 267 -0.02044 -0.01376
4 280 915 -0.01442 -0.04708
5 50 -0.0026
6 299 -0.01538
7 217 -0.01117
8 101 -0.00522




B. M. Randjelovi¢ et al.,/Science of Sintering, 54(2022)425-438

431

For a neural network with 8 neurons in the 1% hidden layer and 6 neurons in the 2" hidden
layer (Fig. 7.), density p and errors calculated in the training process are presented in Tab.VII.
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Fig. 7. Neural network with 8 neurons in the 1% hidden layer and 6 neurons in the 2" hidden
layer.

Tab. VI Density p and calculated errors for a neural network with 8 neurons in the 1% hidden
layer and 6 neurons in the 2" hidden layer.

density p calculated error
Heuron 1" hidden | 2" hidden | output | 1%hidden | 2" hidden output
layer layer neuron layer layer neuron
1 100 160 5400 0.004279 0.00685 0.231791
2 245 289 0.010532 0.012422
3 106 201 0.00456 0.008261
4 197 227 0.008476 0.009762
5 203 278 0.008735 0.011928
6 138 264 0.005924 0.011353
7 210 0.009023
8 225 0.009646

For a neural network with 8 neurons per each hidden layer (Fig. 8.), density p and errors
calculated in the training process are presented in Tab. VIII.

Fig. 8. Neural network with 8 neurons pear each hidden layer.
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Tab. VIII Density p and calculated errors for a neural network with 8 neurons per each

hidden layer.
density p calculated error
ceuron | L hidden 2" hidden | output | 1%hidden | 2" hidden output
layer layer neuron layer layer neuron
1 89 -36 5400 0.018174 -0.00718 1.103968
2 38 198 0.007725 0.040433
3 -23 -60 -0.00461 -0.01225
4 -27 -250 -0.00561 -0.05107
5 2.4 6.7 0.000492 0.001369
6 18 391 0.003766 0.079895
7 -24 -297 -0.00493 -0.06065
8 2.8 163 0.000567 0.033305

For a neural network with 10 neurons in the 1% hidden layer and 2 neurons in the 2" hidden
layer (Fig. 9.), density p and errors calculated in the training process are presented in Tab. IX.
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Fig. 9. Neural network with 10 neurons in the 1% hidden layer and 2 neurons in the 2™ hidden

layer.

Tab. 1X Density p and calculated errors for a neural network with 10 neurons in the 1°

hidden layer and 2 neurons in the 2" hidden layer.

density p calculated error
Seuron 1" hidden | 2" hidden output 1" hidden | 2"hidden | output
layer layer neuron layer layer neuron
1 26 191 5400 0.00461 0.033537 | 0.941893
2 10 86 0.001767 0.015042
3 31 0.005505
4 7 0.001252
5 50 0.00885
6 19 0.003371
7 27 0.004735
8 20 0.003593
9 40 0.007073
10 48 0.008367
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For a neural network with 10 neurons in the 1% hidden layer and 4 neurons in the 2" hidden
layer (Fig. 10.), density p and errors calculated in the training process are presented in Tab. X.
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Fig. 10. Neural network with 10 neurons in the 1% hidden layer and 4 neurons in the 2™
hidden layer.

Tab. X Density p and calculated errors for a neural network with 10 neurons in the 1% hidden
layer and 4 neurons in the 2™ hidden layer.

density p calculated error
ceuron | L hidden 2" hidden | output 1% hidden 2" hidden output
layer layer neuron layer layer neuron
1 96 231 5400 -0.00834 -0.02009 0.469675
2 93 151 -0.00807 -0.01315
3 112 187 -0.00991 -0.01627
4 70 259 -0.006 -0.02257
5 140 -0.01216
6 62 -0.00537
7 99 -0.0086
8 95 -0.0083
9 103 -0.00892
10 116 -0.01007

For a neural network with 10 neurons in the 1% hidden layer and 6 neurons in the 2" hidden
layer (Fig. 11.), density p and errors calculated in the training process are presented in Tab.

XI.
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Fig. 11. Neural network with 10 neurons in the 1% hidden layer and 6 neurons in the 2™
hidden layer.
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Tab. X1 Density p and calculated errors for a neural network with 10 neurons in the 1°*
hidden layer and 6 neurons in the 2" hidden layer.

Seuron 1% hidden | 2™ hidden output 1" hidden | 2" hidden output
layer layer neuron layer layer neuron
1 25 54 5400 -0.00502 0.011114 1.102478
2 13 82 -0.00274 0.016747
3 30 60 0.0062 0.01213
4 6 22 0.001284 -0.00441
5 6 36 -0.00128 -0.00732
6 9 178 -0.00179 -0.03631
7 1 -0.00027
8 9 0.001758
9 3 -0.00072
10 5 0.000972

For a neural network with 10 neurons in the 1% hidden layer and 8 neurons in the 2" hidden
layer (Fig. 12.), density p and errors calculated in the training process are presented in Tab.

XII.
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Fig. 12. Neural network with 10 neurons in the 1% hidden layer and 8 neurons in the 2™

hidden

layer.

Tab. X11 Density p and calculated errors for a neural network with 10 neurons in the 1%
hidden layer and 8 neurons in the 2" hidden layer.

density p calculated error
Seuron 1% hidden | 2" hidden | output 1" hidden | 2" hidden |  output
layer layer neuron layer layer neuron
1 44 0.1 5400 0.006593 0.000244 0.814185
2 47 44 0.007172 0.006576
3 65 -44 30.009782 | -0.00668
4 37 95 0.005601 0.014368
5 7 -35 0.001046 -0.00531
6 9 40 0.001348 0.005974
7 48 175 0.007255 0.026401
8 31 26 0.004759 0.00394
9 64 0.00968
10 23 0.003473
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For a neural network with 10 neurons per each of two hidden layers (Fig. 13.), density p and
errors calculated in the training process are presented in Tab. XIII.

Fig. 13. Neural network with 10 neurons per each hidden layer.
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Tab. X111 Density p and calculated errors for a neural network with 10 neurons per each

hidden layer.
density p calculated error

ceuron | L hidden 2" hidden | output 1 hidden | 2" hidden | output
layer layer neuron layer layer neuron
1 30 83 5400 0.005439 0.014923 0.9711

2 16 281 -0.0029 0.050599

3 6 264 0.001052 -0.04746

4 17 151 0.003093 0.027248

5 21 94 0.003788 0.017005

6 4 3 -0.00082 -0.0005

7 25 105 0.004431 0.018842

8 27 113 0.004794 -0.02038

9 9 184 -0.00161 -0.03316

10 48 4 0.008662 -0.0008

Based on the theoretical experiment results presented in Fig. 2-13, we demonstrated
successful application of the neural network method on samples’ surface density calculation,
as an original novelty with many advantages in this field [14-22].

4. Conclusion

Determining microstructure parameters of consolidated ceramic samples is very
important, because it opens new frontiers for further microelectronics miniaturization and
integrations. In this paper, back propagation neural network is applied, to calculate density
values in the coating layers between the micro ceramics material’s grains. Calculation is
based on experimental density measurements on the bulk sample for p=5.4x10°[kg/m?].
This is new and innovative approach in calculation and determination of characteristics of
the materials, at the intergranular nano level. In order to calculate the precise values of
desired parameter, based on the measurements on the bulk samples, we applied the
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artificial neural networks, as a powerful mathematical tool for mapping input-output data.
Unlike mathematical a method which provides statistical parameters’ values within the
whole sintered sample, BP method enables the calculation of precise density values at the
material’s grains and pores boundary level. In this paper is assumed that neural network
nodes present ceramic grains. In that case increase of neural network complexity should
provide better density estimation. One can notice that better uniformity of grains density is
achieved as neural network complexity rises.

This opens new perspectives in further miniaturization of micro ceramics
materials and also provides advanced technology development, within the science of
sintering. The application of BP neural network also opens new possibilities for very
precisely predicting and designing the ceramic materials properties and desired
microstructure density [23], at the nano level. Those results are natural continuation of the
results from previous papers in this area. They are also a new path to a variety of
interesting possibilities for further research.
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Casxcemax: Oopelhusarwe napamemapa MUKpoOCmMpPYKmype KOHCONUOOBAHUX KePAMUUKUX
V30paKa je eeoma 6adiCHO, jep mo omeapa Hoge MO2YRHOCMU 3d Od/by MUHUJaAMYpU3ayujy u
unmezpayuje. Ilpema mome, Kowmpona, npeosuhare U npojekmosare Cceojcmasa
KepamMuuKux Mamepujana cy yumesu y npoyecy KOHCOIUOayuje Kepamuukux Mamepujaia, y
OK8Upy Hayke o cummepogarpy. [la Oucmo uspauyHaiu npeyusne 6peOHOCMU JHCe/bEeHO2
MUKPOCMPYKMYPHOZ NApaMempa Ha HUBOY Clojesa 3pHA, HA OCHOBY Meperbd HA MACOSHUM
V30pYuMa, npUMeHUIU CMO 8eumaike HeypoHCKe mpedice, Kao Mohan MamemMamuiky aiam 3a
Manuparbe YIa3HO-U3NA3HUX NOOAMAKd. YNa3Hu CUSHalu ce nponazupajy Hanpeo, Kao u
nooecusu Koeguyujenmu Koju OONpuHoce uspayyHamoMm Usia3HomM CUSHALY, O3HAYEHOM KAao
epewika, Koju ce wupu YHa3a0 u 3amersyje UCHUMUBAHUM napamempom. Y nauiem
NPEemX0OHOM UCMPAJICUBAILY KOPDUCMUNU CMO HEYPOHCKE Mpedce 34 U3PAUYHABAREe
PA3IUNUMUX e1eKMPODUIUYKUX NapamMemapa HaA HAHO HUB0Y 2panuye 3pHa, Kao Wmo cy
penamusHu Kanayumem, HAnOH npoboja uiu mauzeHmuu 2youmax, a caoda Npouupyjemo
UCPADICUBAIbE HA NPOPAYYH 2YCMUHe CUHmepoeanoe mamepujana. I pewike na usnazy mpeoice
Cy 3amerbene pasiudumum peOHOCMUMa 2ycmune KOHCOIUOOBAHUX Y30PAKA USMEPEHUM HA
macu, qume je omocyhieHo uspavyHasarbe NpeyusHux peoHOCmuU 2yCmuHe Mamepujana
usmehy cnojeea. M3eo0unu cmo meopujcke excnepumeHme ca HEyPOHCKUM Mpedcama 3d
pasauuum Opoj HeypoHa y CKPUBEHUM ClOjeSUMA, Npema 2yCMuHU eKCHepUMEeHMAnHo2
kepamuuxoz mamepujana 00 p=>54x10°[kg/m®], amu mo omeapa moeylinocm npumene
HEYPOHCKUX MPeCca U Y OKEUpPY Opy2ux 6peoHoCmu 2yCmune.

Kwyune peuu: ueyponcka mpeodica, Kepamuuku Mamepujaiu, CUHMepoBarbe, 2ycmumda,
epeuwixa.
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