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Abstract: 
 The raw diatomaceous earth from the vicinity of Bitola (North Macedonia) showed 
low bulk density (0.61–0.69 g/cm3), high-water absorption (75–81%) and porosity (66–
72%). The chemical composition was determined with ICP-MS, revealing the following 
results for the diatomaceous earth: SiO2 (63.69 wt%), Al2O3 (11.79 wt%), Fe2O3 (5.95 wt%), 
MnO (0.15 wt%), TiO2 (0.65 wt%), CaO (1.51 wt%), MgO (2.24 wt%), P2O5 (0.13 wt%), 
K2O (1.64 wt%), Na2O (0.93 wt%), LOI (11.21 wt%). XRPD data of the examined sample of 
clayey diatomite mainly depicted crystalline behavior with a small presence of amorphous 
phase. The crystalline mineral phases mainly comprise: silica (quartz), feldspars 
(plagioclase), mica (muscovite), chlorites and dolomite. SEM and TEM results show cased 
presence of micro- and nanostructures with pores ranging from 250 to 600 nm. The clayey 
diatomite was sintered at three temperatures (900, 1000 and 1100ºC) for a period of 1 h. 
XRPD of the sintered samples at 1100ºC showed certain thermal stability and formation of 
new phases (mullite and tridymite) that makes the analyzed diatomaceous earth suitable for 
production of various types of ceramic, construction and thermal insulating materials. 
Keywords: Diatomaceous earth; Clay minerals; Characterization; Sintering. 

mailto:arianit.reka@unite.edu.mk
https://doi.org/10.2298/SOS2204495R


A.A.Reka et al.,/Science of Sintering, 54(2022)495-506 
___________________________________________________________________________ 

 

496 
 

1. Introduction 
 
 North Macedonia is abundant in natural inorganic non-metallic materials with a wide 
spectrum of potential use and application, such as diatomaceous earth (DE), perlites, 
bentonites, pumice, dolomite, granite, quartzite, etc. [1-10]. The clayey DE found in the 
proximity of the Bitola power plant, takes a special place amongst non-metallic raw materials. 
It represents a mixture of diatomite and clay minerals. It constitutes a biogenetic rock; 
grayish, soft, very light, weakly cemented, finely opal sedimentary rock [11-19].  
 Diatomaceous earths are composed mainly of accumulated remains of skeletons [20] 
and are considered to be a natural nano materials [21], with various uses and applications such 
as: filtration material, purification of industrial waters and absorption material in an industrial 
scale [22-24], used as catalyst support [25], glass industry [26], production of porous ceramics 
[27-34], as pozzolanic material in the cement industry, pesticide holder, for improving the 
physical and chemical characteristics of certain soils [35-41], for production of humidity 
control materials [42], initial material for production of prolonged-release drug carriers [43], 
as a filler in plastics and paints [44], and many other uses. 
 Taking in consideration that the DE is mined from geological deposits, it may contain 
certain impurities such as metal oxides and organic matter. The chemical composition of 
diatomaceous earth is predominantly silica (SiO2) while the impurities are Al2O3, Fe2O3, CaO, 
MgO, K2O, Na2O, P2O5 and so on, which may have particular effects towards its application 
properties. One way to improve the properties of DE is through the sintering process. During 
the sintering process, the impurities are removed followed by mineralogical changes that 
results in the enhancement on the characteristics of diatomite [45-53]. 
 In this study the impact of the sintering process on the silica phase transition in DE 
was analyzed. It was investigated how the DE and the clay minerals behave during sintering. 
The raw material is sintered at three temperatures 900, 1000 and 1100oC for a period of one 
hour. The transition mechanisms of the occurring changes are discussed by means of XRPD.   
 
 
2. Matherials and Methods  
 
 The clayey diatomite was collected from Bitola region, Republic of North 
Macedonia. The used material is considered a waste in North Macedonia and it is of utmost 
importance and significance to be valorized.  
 For the purpose of sintering, the DE was first crushed and ball-milled for a period of 
2.5 h. After the pulverization of the material, the samples were sintered at three temperatures: 
900, 1000 and 1100°C. The temperature was hold for 60 min at each temperature interval. 
The mineralogical composition was further subsequently analyzed by XRPD. 
 The determination of the chemical composition and the trace elements was performed 
with Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Agilent 7500cx). 
 The mineralogical characterization of the DE  was carried out by an X-ray powder 
diffraction (XRPD), thermal analysis (TGA/DTA), scanning electron microscopy (SEM-
EDS), transmission electron microscopy (TEM) and infrared spectroscopy (IR).  
 XRPD analysis was performed on Rigaku Ultima IV X-ray diffractometer equipped 
with D/teXhigh-speed 1-dimenzional detector using CuKα radiation (λ = 1.54178 Å) in 2θ 
range from 5 to 60°. The accelerating voltage and the current power were set to 40 kV and 40 
mA, respectively.  
 DTA/TGA analyses of the clayey diatomite were performed in an air environment 
with Stanton Redcroft apparatus, under the following experimental conditions: temperature 
range from 20–1200°C; speed of heating set to 10°C/min; sample mass of 13.577 mg. The 
ceramic pot was used as a material carrier. 
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 Scanning electron microscopy VEGA3 LMU coupled with energy dispersive X-ray 
spectroscopy (INCA Energy 250 Microanalysis System) was used to quantitative analyze the 
material. The accelerating voltage of the SE detector was set to 20 kV. 
 The Perkin-Elmer FTIR system 2000 interferometer was engaged to record the IR 
spectra in 4000–500 cm–1 range using the KBr pellet method. The pellets were prepared by a 
mixture of the sample (1 mg) with dried KBr (200 mg) pressed at 10 tcm−2. 

 
 

3. Results and Discussion 
3.1. Physical-mechanical properties of diatomaceous earth 
 
 From the physical-mechanical perspective, the examined DE subject of this study 
represents a sedimentary rock (of biogenetic genesis) with grayish color, soft, loose and light 
material, with fine to superfine grained structure, porous, shell-like etc. The tested sample is 
easily disintegrated by applying pressure to it, while the fine particles give you the feeling of 
scratch. The characterization of the physical-mechanical properties of the raw material is 
performed by analyzing the compressive strength in dry state. The bulk density is determined 
in dry state as well. The bulk density is 0.61–0.69 g/cm3, the density is 2.39 g/cm3, while the 
compressive strength in natural state (raw) is 3.44 MPa. The physical-mechanical properties 
of DE are shown in Table I.  
 
Tab. I Physical mechanical properties of the used diatomaceous earth. 

Bulk density 
(g/cm3) 

Water absorption 
(%) 

Density  
(g/cm3) 

Compressive strength 
(MPa) 

0.61–0.69 75–81 2.39 3.44 
 
3.2. Chemical analysis of diatomaceous earth 

 
 The chemical composition of the DE was analyzed by ICP-MS. The loss of ignition 
(LOI) was 11.29 %, obtained at 1000oC. The results from the chemical composition of DE 
indicate that the analyzed material is an acidic rock with presence of SiO2 at 63.69 % and 
considerable content of Al2O3 (11.79 %) and Fe2O3 (5.95 %). Tabs II and III present the 
chemical composition of the major oxides and the trace elements, respectively. 

 
Tab. II Chemical composition of diatomaceous earth. 
Oxides SiO2 Al2O3 Fe2O3 MnO TiO2 CaO MgO P2O5 K2O Na2O LOI Total 
Mass 

(wt.%) 
63.69 11.79 5.95 0.15 0.65 1.51 2.24 0.13 1.64 0.93 11.29 99.99 

 
Tab. III Trace elements determined in the diatomaceous earth. 
Trace element Cu Cr Ni Co Zn V Pb Cd As Se Tl Bi Ba Rb 
Content (ppm) 112 109.5 41.1 22.5 3.61 113.1 10.28 0.59 5.89 3.19 0.89 0.56 459.4 114.5 
Trace element Sr Cs Th U Mo Sn Sb Pd Ag Ga Ge Li Be B 
Content (ppm) 166.2 4.19 9.58 7.67 1.59 2.77 0.19 0.59 2.49 16.58 1.01 32.69 2.59 <10 
 
3.3. X-ray powder diffraction analysis of diatomaceous earth 

 
 As shown in Fig. 1 the XRPD pattern of the examined sample of natural DE mainly 
depicts crystalline behavior with a small presence of amorphous phase. The crystalline phases 
are mainly represented by silica (quartz), feldspars, mica (muscovite), chlorites and dolomite.  
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Tab. IV XRPD data of the raw diatomaceous earth. 

Silica 
d(Å) 4.25 3.34 2.45 2.28 1.81 1.54 

(°) 20.88 26.65 36.57 39.51 50.16 59.79 

Feldspars 

(plagioclase) 

d(Å) 6.36 4.02 3.77 3.66 3.61 3.23 3.20 3.19 2.95 2.92 

(°) 13.90 22.05 23.55 24.30 24.65 27.51 27.83 27.96 30.25 30.50 

Mica 

(muscovite) 

d(Å) 9.91 4.96 4.47 3.86 3.49 3.31 2.99 2.85 2.80 2.56 2.35 2.23 

       2.12 1.98 1.97 1.73 1.67 1.65 

(°) 8.92 17.85 19.84 23.01 25.54 26.91 29.88 31.28 31.85 34.96 38.22 40.32 

        42.49 45.56 45.96 52.92 54.93 55.35 

Chlorites 

(clinochlore) 

d(Å) 14.10 7.05 4.70 3.53 2.59 2.49 2.38 2.31 

(°) 6.26 12.53 18.84 25.54 34.50 36.08 36.75 38.86 

Dolomite 
d(Å) 2.89 2.67 2.19 1.80 1.78 

(°) 30.85 33.48 41.14 50.61 51.17 

       
 

 
  2θ/° 

 
Fig. 1. XRPD diagram ofthe raw diatomaceous earth. The peak associated by each crystalline 

phase is marked (Q: quartz, M: muscovite, C: clinochlore, P: plagioclase, D: dolomite). 
 

3.4. Infrared spectrum interpretation of the diatomaceous earth 
 
 The infrared bands of the raw DE exhibits the bands at 3697cm‒1, 3620 cm‒1 and    
760 cm‒1 due to the presence of muscovite phase [54]. The evident broad band around 3429 
cm‒1 is attributed to the H‒O‒H stretching vibrations of absorbed water. The band at 1637 
cm‒1 occurs from the H‒O‒H bending vibrations of adsorbed water in the phyllosilicate (sheet 
silicate) minerals as well as from the H2O present in opal-A. The band at 1039 cm-1 associated 
by the shoulder at 1100 cm‒1 is attributed to the Si‒O‒Si stretching vibration [52]. The band 
at 796 cm‒1 band is related to the OH translational vibration and Si‒O‒Si bending vibrations 
within the framework [52-53]. The dolomite presence in the DE is mapped by the band at 722 
cm-1 from the v4(CO3

2-) vibration [54], whereas the bands at 694 and 745 cm‒1 are due to the 
clay minerals in the sample [55]. The absorption bands around 648 cm‒1 and 529 cm‒1 
originate from Si‒O‒Al vibrations (Al in octahedral coordination), while the band around 468 
cm-‒1 is attributed to the Si-O-Si bending vibrations [23,41,51]. The bands centered at 424 
cm‒1 and 468 cm‒1 appear from the presence of the feldspars in the sample [54]. 
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Wavenumber/cm‒1 

 
Fig. 2. IR spectrum of the raw diatomaceous earth. 

 
3.5. Scanning electron microscopy (SEM) of diatomaceous earth 
 
 The scanning electron microscopy images of the DE provide (Fig. 3) illustrated the 
biogenic origin of the sample because of the presence of various skeletal forms. These 
skeletons are remains of diatom algae and exhibit morphology depicting clearly visible 
nanometric pores (300–650 nm). Despite their pronounced variation in size, volume and 
shape, they do not contain impurities and majority of them are open. The observed features 
give credit for this material to be suitable for use in various fields of the chemical industry 
(filter, absorbent, clarifier etc.). 

 

 
 

Fig. 3. SEM of DE composed of various micro-relics-skeletons of biogenic origin with 
various forms, with pores ranging from 300–650 nm. The well-preserved frustules with fine 

details indicating that the diagenetic alternations were not significant. 
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 The employment of the SEM-EDX enabled to quantitatively determine the chemical 
composition of the DE. The element weight percentage (Fig. 4, O: 59.23%, Al: 2.52%, Si: 
35.15%, K: 0.86%, Ca: 0.72%, Fe: 1.51%) confirms the presence of clay minerals in the 
sample. 
 

 
 

Fig. 4. SEM of DE (left) and the element content as determined by EDS (right). 
 

3.6. Transmission electron microscopy (TEM) of the diatomaceous earth 
 
 The TEM results of the DE inferred that the analyzed sample confirms the results of 
the SEM analysis in regards to the texture and the morphology and especially the pore sizes 
found in the raw material (Fig. 5). The pore size ranges between 250–650 nm, but dominantly 
span within the 250–350 nm range. The diatom shells in DE show porous structure and 
somewhat clean surface, while pores are filled by impurities due to the clay minerals found in 
the sample. 

 

 
 

Fig. 5. TEM photomicrographs of the DE with visible pores ranging from 250 nm to 350 nm. 
 

3.7. Compressive strength of sintered monoliths 
 
 The samples were prepared in semi-dry condition, using sufficient moisture in order 
to obtain cylindric monoliths. The samples were sintered at three temperature intervals: 900, 
1000 and 1100°C. Based on the results (Table V), it is evident that the compressive strength 
of DE monoliths (Fig. 7) increases with the increase of the sintering temperature. 
Subsequently, the monoliths sintered at 900°C show compressive strength of 10.37 MPa, 
while the sintered at 1000 and 1100°C showed increased compressive strength of 14.56 MPa 
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and 22.78 MPa, respectively. These observed values of are comparable to other porous 
ceramics fabricated from comparatively more expensive starting materials.  
 
Tab. V Physical-mechanical properties of cylinders of diatomaceous earth sintered at 900, 
1000 and 1100°C for a period of 60 min. 

Temperature 
(°C) 

Bulk density 
(g/cm3) 

Compressive 
strength 
(MPa) 

Mass 
(g) 

Diameter 
(mm) 

Shrinkage 
(%) 

20 - - - 20.00 - 
900 0.87 10.37 2.14 19.65 1.75 

1000 0.95 14.56 2.16 19.26 3.70 
1100 1.16 22.78 2.12 18.77 6.15 

 
3.7. X-ray powder diffraction analysis of sintered diatomaceous earth  
 

 
                        2θ/° 

 
Fig. 6. XRPD analysis of raw DE (a), thermally treated sample for a period of 1 hr at 900°C 

(b), at 1000°C (c), at 1100°C (d). 
 

 As reported previously, the XRPD pattern of the examined sample of DE mainly 
depicted crystalline behavior with a small presence of amorphous phase (Fig. 6). The 
crystalline phases are mainly represented by silica (quartz), feldspars (plagioclase), mica 
(muscovite), chlorites and dolomite. The results of the XRPD analysis of the sintered DE at 
900, 1000 and 1100°C showed that the amount of the amorphous phase was expanded as the 
temperature was increased. In the XRPD pattern of the sample sintered at 1100°C, the 
complex “bump” positioned between 17 and 20° (2θ) emerged. This “bump” is attributed to 
the transformation of the crystalline phase into aluminosilicate amorphous glass. During the 
sintering of the DE, a slight decrease of the quartz phase was observed (at 1100°C), and the 
formation of two new phases (mullite and tridymite) is apparent (see Table VI). 
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Tab. VI The peaks evolving in the XRPD pattern of diatomaceous earth sintered at 1100°C. 

Mullite d(Å) 5.40 3.44 3.39 2.88 2.69 2.55 2.51 2.28 2.20 2.13 2.04 1.83 1.69 
(°) 16.40 25.85 26.14 30.94 33.20 35.05 35.52 39.42 40.86 42.37 44.34 49.54 54.21 

Tridymite d(Å) 4.31 4.10 3.68 2.51 2.28 2.04        
(°) 20.60 21.62 24.23 32.52 39.42 44.34        

 
 
4. Conclusions  
 

The DE was found to represent a weakly bound, very soft loose rock with a greyish 
white color, with a low bulk density (0.61–0.69 g/cm3), and high-water absorption (75-81%) 
and porosity (66-72%). 

The microscopic analysis of the DE defines the biogenic origin of the material. 
Additionally, SEM and TEM results reveal presence of micro- and nanostructures with pores 
ranging from 250-600 nm. 

From chemical as well as mineralogical point of view, either as raw or sintered, the 
DE represents a raw material with high potential use as adsorbent, production of filter media 
and catalyst. Compared to other naturally occurring nanocarriers, the nanometric size pores 
and morphology of these nanostructures found in the DE strengthen its potential for its use in 
drug delivery applications and/or for production of various composite materials. 

The overall pool the presented results provide valuable information regarding the 
nature of raw DE its sintering behavior in the interval 900–1100°C. The thermal stability, and 
particularly the phase transformations during the sintering, is of significant importance for its 
use and application. The formation of mullite and tridymite at 1100°C classified the material 
as suitable for production of various types of ceramic materials (different construction 
materials and thermal insulating materials).  
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Сажетак: Сирова дијатомејска земља из околине Битоља (Северна Македонија) 
показала је ниску насипну густину (0,61–0,69 g/cm3), високу апсорпцију воде (75–81%) и 
порозност (66–72%). Хемијски састав је одређен помоћу ИЦП-МС, откривајући 
следеће резултате за дијатомејску земљу SiO2 (63.69 wt%), Al2O3 (11.79 wt%), Fe2O3 
(5.95 wt%), MnO (0.15 wt%), TiO2 (0.65 wt%), CaO (1.51 wt%), MgO (2.24 wt%), P2O5 
(0.13 wt%), K2O (1.64 wt%), Na2O (0.93 wt%), LOI (11.21 wt%). XRPD подаци 
испитиваног узорка глиненог дијатомита углавном су приказали кристално понашање 
са малим присуством аморфне фазе. Кристалне минералне фазе углавном обухватају: 
силицијум диоксид (кварц), фелдспат (плагиоклас), лискун (московит), хлорите и 
доломит. Резултати СЕМ и ТЕМ показали су присуство микро- и нано структура са 
порама у распону од 250 до 600 nm. Глинени дијатомит је синтерован на три 
температуре (900ºC, 1000ºC и 1100ºC) у трајању од 1 сата. КСРПД синтерованих 
узорака на 1100ºC показао је извесну термичку стабилност и формирање нових фаза 
(мулит и тридимит) што чини анализирану дијатомејску земљу погодном за 
производњу разних врста керамичких, грађевинских и термоизолационих материјала. 
Кључне речи: Диатомејска земља, минерали глине, карактеризација, синтеровање. 
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