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Abstract:

The machine learning technique for prediction and optimization of building material
performances became an essential feature in the contemporary civil engineering. The
Artificial Neural Network (ANN) prognosis of mortar behavior was conducted in this study.
The model appraised the design and characteristics of seventeen either building or high-
temperature mortars. Seven different cement types were employed. Seventeen mineral
additives of primary and secondary origin were embedded in the mortar mixtures. Cluster
Analysis and Principal Component Analysis designated groups of similar mortars assigning
them a specific purpose based on monitored characteristics. ANN foresaw the quality of
designed mortars. The impact of implemented raw materials on the mortar quality was
assessed and evaluated. ANN outputs highlighted the high suitability level of anticipation, i.e.,
0.999 during the training period, which is regarded appropriate enough to correctly predict
the observed outputs in a wide range of processing parameters. Due to the high predictive
accuracy, ANN can replace or be used in combination with standard destructive tests thereby
saving the construction industry time, resources, and capital. Good performances of altered
cement mortars are positive sign for widening of economical mineral additives application in
building materials and making progress towards achieved carbon neutrality by reducing its
emission.

Keywords: Masonry Cements; High-temperature Cements; Industrial byproducts; Low-cost
primary raw materials; Circular economy.

1. Introduction

There is a constant tendency regarding widening of low-cost mineral additives
application in the building materials sector in order to make progress towards reduction of
carbon emission and to achieve carbon neutrality in indoor and outdoor spaces. Therefore,
natural pozzolana and industrial byproducts are often employed as supplementary admixtures
in cement-based materials such as concrete and mortar. These additives not only replace
cement thereby influencing the reduction of CO, emission in the atmosphere, they also play
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an important role in the modification of cementitious material microstructure, they rearrange
chemical reactions routes within cement, and finally they incite changes in mechanical and
thermal properties of building materials [1-6].

Various mineral additives have been employed in the design of mortar and concrete
over past few decades. Each of these either primary or secondary raw materials has positive as
well as negative effects on the performances of the construction materials. The chemical
composition of a mineral additive strongly influences and modifies chemical reactions that
define hydration and subsequent solidification of the observed building material. Besides its
chemical composition, physical and morphological characteristics of mineral additive
particles (specific surface area, grain size, diameter and shape) impact properties and final
behavior of the material. Probably the most effective admixtures to modify the microstructure
of a cementitious material are nano silica, micro silica and silica fume [7-10]. The silica based
mineral additives bestow cement mortar and concrete properties (compressive strength,
flexural strength) due to their pozzolanic reaction and smaller particle sizes than cement
particles. Limestone powder, fly ash and bottom ash (coal combustion byproducts), and
zeolite are frequently employed pozzolana resources in the new paradigm of the circular
economy [11-17]. Limestone powder is frequently utilized for achieving a target flow of fresh
mixture. This additive induces high early dimensional stability [12]. Fly ash reduces early
heat of hydration and decreases volume stability issues in different exposure conditions. Fly
ash requires higher water demands than cement, but it provides denser microstructure [15].
Zeolite performances are between those of limestone and fly ash. The addition of natural
zeolite leads to an improvement in mechanical strengths, durability properties, and weather
resistance of cementitious material [16]. Due to bentonite outstanding water swelling
properties, it is used in mortar or concrete to fill the small voids in order to decrease the water
migration withing the pore structure. This enables excellent waterproofing and
impermeability characteristics of the building composite. Bentonite does not have significant
influence on the compressive strength; however, it influences notable improvement in sulfate
attack resistance [17-22]. Similar to zeolite, the addition of bentonite to the cement matrix
effectively reduces the leaching rate of the radionuclides and heavy metals [16, 20]. Copper
slag employed as a replacement for cementing binder or as an admixture has considerable
influence on the mechanical properties, durability, as well as thermo-mechanical behavior
[23]. Clay, usually activated by acids or by thermal or alkaline methods, as well as kaolin or
chamotte grog is widely used low cost pozzolanic materials [24-26]. Powdery alumina
incorporation leads to long-term improvements in strength of cementitious material due to the
increase in monosulfate content. Namely, the formation of additional monosulfate phases
increases solid volume, reduces porosity, and refines pore structure in the cement paste,
consequently leading to an enhancement of strength at later ages [27]. Perlite, vermiculite,
spinel, and pyrophyllite are often employed to augment the thermal characteristic such as
compressive strength after firing [28-31].

Acrtificial intelligence methods such as artificial neural networks (ANNS) are
becoming more in demand as they are extensively used by many researchers in a variety of
engineering applications [32-34]. In recent years, studies were reported in which the ANN are
employed to estimate the various mechanical properties of cementitious building materials
(mortar of concrete) containing different types of mineral additives [35-38]. Usually
compressive strengths (CS), as the most important parameter of mortar’s quality, are
predicted by application of two different multilayer ANN architectures on a large number
different mixtures (each one comprising number of specimens pinpointed in adequate EN
standard for CS testing) [37]. As a result, the tested characteristic of mortar containing
specific mineral additive can be predicted in the multilayer feed forward ANN model. Despite
the ongoing extensive research in this field, there is still no universal model for the prediction
of simultaneous effects of additives on mortar properties which would minimize the
experimental work as well as save cost and time.
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The aim of the proposed ANN model in this study is to assess the influence of the
chemical composition of seventeen mineral additives (fly ash, bottom ash, zeolite, bentonite,
perlite, vermiculite, pyrophyllite, micro silica, silica fume, spinel, chamotte grog, calcinated
clay, kaolin clay, alumina, limestone, talc, and copper slag) on the quality of cement mortars
indicated using following parameters: heat of hydration (HH), setting time (IST, FST), cold
compressive strength (CCS), cold flexural strength (CFS), hot compressive strength (HCS),
refractoriness (SK, SK-T), and sulphate resistance (SR). The accomplishment of ANN is
matched to experimental results. Normalized form of the input parameters is obtained and
applied in the mentioned models in order to increase the correlation between input parameters
and target to predict more accurate properties of cement mortars. The developed ANN model
displays high predictive accuracy and can replace or be used in combination with standard
destructive tests thereby saving the construction industry time, resources, and capital.

2. Materials and Experimental Procedures

Seventeen experimental mortars were prepared for this study. The labels of mortar
samples, abbreviations used for the employed raw materials, i.e. cements and mineral
additives, as well as their mix-designs are provided in Table I. Initial six cement mortar
samples (M-OPC, M-MHHC, M-HESC, M-LHHC, M-HSCR, M-CAC, and M-HAC) were
used as reference samples in the analytical modeling i.e., for comparison and
differentiation of altered mortars — mortars with mineral additives (M-FA, M-BA, M-Z, M-
B, M-Pr, M-V, M-Py, M-MS, M-SF, M-Sp, M-CG, M-Cc, M-Kc, M-Ap, M-L, M-T, and
M-CS).

The mortar samples were prepared according to the standard procedure provided in
SRPS EN 480-1:2015. Mineral additives were employed in quantities from 10 to 20 %
(calculated from the mass of cement), with respect to EN 197-1, as given in Table I. The
aggregate comprised three fractions (-0.2+0.6; -0.6+1.0; and -1.0+2.0 mm) of either quartz or
corundum sand in 1:1:1 ratio.

Pozzolanic activity (PA) was estimated for each mineral additive individually
according to the procedure described in SRPS EN 196-5:2012. In order to maintain the
simplicity of comparisons during analytical modeling it was adopted that cements (OPC,
MHHC, HESC, LHHC, HSCR, CAC, and HAC) exhibit the highest pozzolanic activity
(marked with number 5). Compressive strength of each altered mortar is lower than that of
standard cement mortar. Therefore, depending on the obtained compressive strength value,
each of mineral additives was correlated to a mark ranging from 4 to 1 (higher mark indicates
higher strength i.e., higher PA).

The hydration heath (HH) was obtained by isothermal conduction calorimetry method
described in SRPS EN 196-11:2019. Setting times (IST and FST) were determined according
to SRPS EN 196-3:2019 (Determination of setting times and soundness). Compressive and
flexural strengths were tested on 4x4x16 cm prismatic samples in accordance with SRPS EN
196-1:2017 (Detrmination of strength). Mechanical strenths were measured after 3, 7, 14, 21,
and 28 days upon preparation of the samples. Hot compressive strength was obtained on the
fired mortar samples. Upon 28 days old of curing and solidification, the prismatic samples
(4x4x16 cm) were submitted to the thermal treatment in a laboratory furnace at following
temperatures: 100, 500, 800, and 1000 °C. The rate of heating rate was 100 °C/h with 2 hours
delay upon reaching the targeted temperature. Refractoriness (SK — number of equivalent
pyrometric cone, and SK/T — melting temperature of equivalent pyrometric cone in °C) was
estimated according to ASTM C24-09 (2018) - Standard test method for pyrometric cone
equivalent (PCE) of fireclay and high-alumina refractory materials. Sulphate resistance was
tested according to the SRPS CEN/TR 15697:2014 Cement - Performance testing for sulfate
resistance - State of the art report. In order to simplify analytical modeling SR of the cement
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mortars and altered mortars was indicated by marks ranging from 1 to 3, i.e., “low—
moderate — excellent” system where higher mark reveals better sulphate resistance of tested
material.

Cluster analysis (CA) was undertaken to categorize and discriminate mortar samples
i.e., cement mortars (M-OPC, M-MHHC, M-HESC, M-LHHC, M-HSCR, M-CAC, and M-
HAC) and altered mortars (M-FA, M-BA, M-Z, M-B, M-Pr, M-V, M-Py, M-MS, M-SF, M-
Sp, M-CG, M-Cc, M-Kc, M-Ap, M-L, M-T, and M-CS). All samples were aggregated in a
twenty-four-dimensional space. Complete linkage was used for analytical modeling. City-
block (Manhattan) distance was evaluated in cluster analysis.

Tab. | Mix designs of experimental mortars.

Mortar Cement (type), % Mineral additive, % Agdgregate, %

Quartz Corundum
M-OPC 25 (OPC) - 75 -
M-MHHC 25 (MHHC) - 75 -
M-HESC 25 (HESC) - 75 -
M-LHHC 25 (LHHC) - 75 -
M-HSCR 25 (HSCR) - 75 -
M-CAC 20 (CAC) - - 80
M-HAC 20 (CAC) - - 80
M-FA 20 (OPC) 5 75 -
M-BA 20 (OPC) 5 75 -
M-Z 21.25 (OPC) 3.75 75 -
M-B 21.25 (OPC) 3.75 75 -
M-Pr 21.25 (OPC) 3.75 75 -
M-V 21.25 (OPC) 3.75 75 -
M-Py 17.5 (OPC) 75 75 -
M-MS 22.5 (OPC) 2.5 75 -
M-SF 22.5 (OPC) 25 75 -
M-Sp 17 (CAC) 3 - 80
M-CG 17 (CAC) 3 - 80
M-Cc 21.25 (OPC) 3.75 75 -
M-Kc 17 (CAC) 3 - 80
M-Ap 17 (CAC) 3 - 80
M-L 20 (OPC) 5 75 -
M-T 17 (CAC) 3 - 80
M-CS 21.25 (OPC) 3.75 75 -
Cement: OPC - Ordinary Portland cement; MHHC - Moderate heat hydration cement; HESC -
High early strength cement; LHHC - Low heat hydration cement; HSCR - High sulphate
resistant cement; CAC - Calcium aluminate cement; HAC - High alumina cement;
Additive: FA - Fly ash; BA - Bottom ash; Z - Zeolite; B - Bentonite; Pr - Perlite; V -
Vermiculite; Py - Pyrophyllite; MS - Micro silica; SF - Silica fume; Sp - Spinel (powder); CG -
Chamotte grog; Cc - Clay (calcinated clay); Kc - Kaolin clay; Ap - Alumina (powder); L -
Limestone; T - Talc; CS - Copper slag.
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Tab. 11 Chemical compositions of experimental mortars.

SiO;, | AlOs, | Fe,05 | CaO, | MgO, | KO, | Na©O, | TiO, | SOs | Lol, %
Mortar % % % % % % % % %
M-OPC | 76.42 | 2.02 | 099 | 1585 | 0.72 036 | 005 | 0.015| 0.567 | 0.725

M-MHHC | 7592 | 187 | 164 | 1548 | 105 0.22 | 0.04 | 0.015 | 0.372 | 0.675
M-HESC | 7545 | 171 | 087 | 1692 | 0.86 0.29 | 0.07 | 0.015 | 0.820 | 0.700

M-LHHC [ 7680 | 166 | 127 | 1558 | 0.82 0.16 | 0.06 | 0.015 | 0.547 | 0.740

M-HSCR | 78.26 | 146 | 1.07 | 1521 | 0.39 021 | 0.07 |0192 | 022 | 0585
M-CAC 1.80 | 8851 | 167 | 7.32 0.14 0.04 | 0.05 |0.392| 0.014 | 0.276
M-HAC 0.14 | 9380 | 012 | 555 0.02 0.02 | 0.08 | 0.008 | 0.002 | 0.168
M-FA 7843 | 263 | 119 | 13.03 | 0.70 0.36 | 0.06 | 0.017 | 0.496 | 0.807
M-BA 7812 | 271 | 114 | 1316 | 0.68 0.37 | 0.08 | 0.041 | 0.489 | 0.929

M-Z 77.98 2.24 0.93 | 13.589 0.63 0.35 0.07 | 0.015 | 0.481 | 1.165
M-B 77.72 2.36 0.98 13.51 0.73 0.36 0.23 | 0.027 | 0.478 | 1.063
M-Pr 78.32 2.31 0.91 13.54 0.62 0.51 0.16 | 0.017 | 0.482 | 0.852
M-V 5.80 76.48 1.54 13.10 1.83 0.27 0.03 0.06 | 0.316 | 0.193

M-Py 79.99 2.73 0.87 11.67 0.59 0.34 0.06 | 0.027 | 0.398 | 1.363
M-MS 78.29 1.89 0.94 14.30 0.65 0.34 0.04 | 0.015] 0515 | 0.721
M-SF 78.11 1.88 0.91 14.32 0.65 0.34 0.08 | 0.015 | 0.561 | 0.801

M-Sp 1.55 89.32 1.43 6.23 0.93 0.03 0.06 | 0.343 | 0.0119 | 0.259
M-CG 3.05 87.69 1.87 6.37 0.19 0.08 0.12 | 0401 | 0.094 | 0.312
M-Cc 77.65 2.40 0.99 13.56 0.68 0.34 0.05 | 0.080 | 0.540 | 1.410
M-Kc 3.32 88.02 1.48 6.25 0.12 0.04 0.05 | 0334 | 0.012 | 0.537
M-Ap 1.54 90.20 1.42 6.22 0.12 0.03 0.05 | 0334 | 0.012 | 0.243
M-L 75.43 1.75 0.83 15.49 0.62 0.31 0.04 | 0.016 | 0.454 | 2.767
M-T 3.05 87.23 1.61 6.23 1.11 0.03 0.05 | 0.335 | 0.012 | 0.525

M-CS 76.25 2.07 2.97 13.72 0.77 0.36 0.07 | 0.015 | 0.4883 | 0.822

Principal Component Analysis (PCA) was used in exploratory data analysis. The
procedure was performed by Eigenvalue decomposition of a data correlation matrix [39]. The
first component has the largest possible variance. The maximum separation among clusters of
parameters is acquired by this analysis. Considerable reduction in a number of variables and
the detection of structure in the relationship between measuring parameters is achieved. The
full auto scaled data matrix consisting of different mortar mixtures was submitted to the PCA,
which resulted in spatial relationship between processing parameters (mortar properties) and
formed graphic differentiation between observed samples.

The assessing of CA and PCA of the acquired results was executed using Statistica
software version 12 (StatSoft Inc. 2013, USA)®.

Artificial Neural Network model (ANN) was used in the prediction of values of the
experimental data i.e., tested properties (PA, HH, IST, FST, CCS-d, CFS-d, HCS-T, SK, and
SR). The database for ANN was randomly divided into: training data (60 %), cross-validation
(20 %), and testing data (20 %). The cross-validation data set was used to test the
performance of the network, while training was in progress as an indicator of the level of
generalization and the time at which the network has begun to over-train. The testing data set
was used to examine the network generalization capability. To improve the ANN behavior,
both input and output data were normalized. In order to obtain good network behavior, it is
necessary to conduct a trial-and-error procedure and also to choose the number of hidden
layers, and the number of neurons in hidden layer(s). In this analysis, a Multilayer Perceptron
Model (MLP) comprised three layers (input, hidden and output). These architectures were
used in parameters anticipation, and have been certified as entirely proficient of
approximating nonlinear functions [40]. Broyden-Fletcher-Goldfarb-Shanno (BFGS)
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algorithm was engaged for solution of the unconstrained nonlinear optimization in the ANN
modelling [41].

The weight coefficients and biases connected to the hidden and output layers of the
ANN model are introduced in matrices and vectors W, and B, and W, and B,, respectively.
The neural network model can be outlined by matrix notation:

Y=fW, -f,W,-X+B)+B,) 1)

where Y is the matrix of the outputs, f; and f, are transfer functions in the hidden and output
layers, accordingly, and X is the matrix of inputs [42].

The optimum count of hidden neurons was selected upon minimizing the divergence
among anticipated ANN values and desired outputs, using r? during testing as a performance
indicator.

The Yoon’s global sensitivity equation was used to calculate the relative impact of
the input parameters on output variables, according to weight coefficients of the developed
ANN models [43]:

Z (Wik ‘ij)
RI; (%) = -k :100%
Z Z (Wik 'ij) (2)
i=0 |k=0

where: w - weight coefficient in ANN model, i - input variable, j - output variable, k - hidden

neuron, n - number of hidden neurons, m - number of inputs.

The numerical verification of the developed models was tested using coefficient of
determination (r?), reduced chi-square (5%, mean bias error (MBE), root mean square error
(RMSE) and mean percentage error (MPE). These commonly used parameters can be
calculated as fO||0WS'

Z (Xexpl  Npre, |

12
Z N —n , RMSE = |: Z(Xprel_ exp,i :| !

N p—
MBE :%'Z(Xpre,i ) MPE =@ Z(‘ e~ Yo
i=1

)

exp i
Xexp i

where Xexp; Stands for the experimental values and X, are the predicted values calculated by
the model for these measurements. N and n are the number of observations and constants,
respectively.

3. Results and Discussion

The following properties of the experimental mortar samples were monitored:
pozzolanic activity for mineral additive (PA), heat of hydration (HH), J/g; initial setting time
(I1ST), min; final setting time (FST), min; cold compressive strength after d = 3, 7, 14, 21, and
28 days (CCS-d), MPa; cold flexural strength after d = 3, 7, 14, 21, and 28 days (CFS-d),
MPa; hot compressive strength after firing at T=100, 500, 800, and 1000°C (HCS-T), MPa;
refractoriness (SK and SK/T, °C); and sulphate resistance (SR), MPa. Experimentally
obtained data are presented in Table I11.
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3.1. Correlation analysis

The correlation analysis was employed in investigation of the relations between
output variables i.e., properties of experimental mortars. The obtained results are visualized
and displayed in Figure 1. It can be noticed that the darker blue color of the squares, which
shows the two variables relation, presents a stronger correlation between these variables. On
the other hand, the lighter tone suggests a certain difference between two variables.

v — «_,2828 |
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HH
IST 0.8
FST
CCS-3 0.6
CCS-7
CCS-14 r 04
CCS-21
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CFS-14
CFS-21 Lo0.2
CFS-28
HCS-100 -0.4
HCS-500
HCS-800 06
HCS-1000
SK -0.8
SK-T
SR

Fig. 1. Correlation analysis between output variables (mortar properties).

As seen in Fig. 1, the heat of hydration (HH) has strong influence over early
mechanical strengths. Both compressive and flexural strengths of all investigated mortars,
cement based- and altered mortar samples alike, are directly influenced by HH parameter. The
strongest relation is visible for compressive and flexural strengths measured after three days
(CCS-3 and CFS-3), and it decreases over time. Relations between HH and mechanical
strengths developed from 7" to 14™ day - CCS-7, CCS-14, CFS-7, and CFS-14, respectively,
are marked as strong by exhibiting correlation coefficient value between 0.8 and 1. Initial and
final setting times (IST, FST) are indirectly correlated to early compressive and flexural
strengths (CCS-3, CCS-7, CFS-3, CFS-7) since their correlation coefficient ranges between -
0.8 and -0.9. IST and FST parameters have slight influence over hot compressive strengths
(HCS-100, HCS-500, HCS-800, and HCS-1000) as their correlation coefficients vary between
-0.4 and -0.6. Cold compressive strengths are directly correlated to flexural strengths
(correlation coefficients = 0.8-1), as well as with hot compressive strengths (correlation
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coefficients = 0.6-0.8). Refractoriness is directly dependent on hot compressive strengths
(correlation coefficients = 0.7-0.9). Sulphate resistance is directly correlated to compressive
and flexural strengths (correlation coefficients = 0.6-0.7).

Tab. 111 Experimentally obtained properties of cement mortars and altered mortars.

ccs]ces|ccs|ces[ces|[CFICF]CRS|CFs [CRS[HES- [HCS- [HCS| Hes-
PAIHHNISTIFST)™ 3™ ™27 14 | 221 | -28 [s-3]s-7] 14 |-21 | 28| 100 | 500 |-800| 1000 | S [SK-T| SR

31.2|41.1 49.0
M-OPC 5 1320|165{225 5 5 47.2 5 50.3(6.8|7.5]18.719.4195| 48.4 27912011215 9 |1280]| 1

M-MHHCc] 5 [275/180|255(22.7|31.9148.1153.6165.115.2(5.7| 6.4 |12.4]114.3] 40.5 | 25.3 |15.4| 155 8 [1250| 2

M-HEsc | 5 |375[105{160] 42.6 |55.2(59.4161.8(63.718.9/9.5(11.6|12.7|13.5] 39.8 | 26.1 |16.7( 16.8 | 8 [1250] 1

M-Lunc | 5 [260] 95 [480[ 13.7|17.9]|26.8|42.8|49.8|4.1|4.5| 5.7 | 7.2 | 9.4 | 48.3 [ 27.7 [20.2 209 | 9 [1280] 2

M-HscR | 5 [275[160]230] 14.1(16.9]32.4|48.3|51.7|16.6(7.3]1 8.5 9.2 | 95 481|273 | 20 | 205 | 10 |1300| 3

vcac | 5 [370[ 90 |155|53.8(67.8| 75.2[81.3[84.1 (9.3 " [14.2[15.9|16.2| 811 | 712 [63.1 453 | 20 |1530| 3
vnac | 5 [B75( 90 |155|61.7|78.5|835|87.9[01.5(9.8| "2 [ 15.3[17.1(18.7 908 | 1.4 [65.2| 555 | 34 |1750 | 3
vra |4 Jasolii0[170(45.3 [s6.2[60.8[61.9[63.9[8.9[0.3[11.3{12.5{13.6] 53.7 [ 416 |30.2| 313 | 20 1530 2
v | 3 [355f118(185| *00 511 |s5.3[57.0[60.1(8.70.1[11.2(12.1(13.2|53.65| 417 [30.2| 31.3 | 20 |1530 | 2
vz |4 [B55js|18s| *4%[52.7(56.8[58.1|60.8|6.8[0.3[11.2|12:3|13:3] 53.8 | 41.8 |30.2| 31.4 | 20 1530 2
v | 4 [B50ji20{100| %5t 49.554.2|55.4|58.7 |86 9.1 109[11.8(131| 53.2 | 412 [30.1[ 313 | 19 | 1520 2

M-Pr | 1 [275]175]250(23.1(29.2132.4{37.9]39.6/5.1(5.4] 59 | 6.4 | 7.1 | 36.1 | 35.2 32.8]| 32.6 | 26 | 1580 1

M-v |1 [275[175(245])27.3]133.2|38.6|41.2|{44.1]5.2|5.7 6.3 | 6.7 | 7.3 | 40.2 | 35.1 |33.4( 33.2 | 16 [1460] 1

M-Py 3 [325[165(230] 31.4|141.5(46.9]148.9|50.516.7|7.4] 8519.3 9.5 485 | 43.2 | 40 | 40.2 | 26 [1580| 2

M-Ms | 4 |360[110]160|45.5|56.9(61.2|164.2(65.1|18.8(9.1] 9.9 |10.5{11.3| 57.8 | 49.2 [38.9] 39 | 20 |1530| 2

M-SE | 4 [355]115]170(45.3156.4|60.7|62.3162.518.7( 9 | 9.7 [10.3|11.2| 56.8 | 47.8 (36.1| 36 [ 20 [1530| 2

M-Sp 2 [375|90(155(57.8]73.1|78.2184.5/90.1]9.5| 12 |14.8|16.5{17.8| 88.6 | 80.1 [63.7] 50.3 | 34 [1750| 3

M-CG 3 [370]90155]53.9(68.9(76.2| 82 [85.1{9.3 l;" 14.5116.3|16.8| 82.5 | 73.5 |64.2] 47.3 | 19 | 1520| 2
M-Cc 3 [370]90155]54.1(69.1{76.9(82.5(85.89.3 1;' 14.6]16.5| 17 | 85.5 | 80.2 |64.8] 49.9 | 27 | 1610| 2
M-Kc | 3 [350]125/200|37.2147.7]150.8(53.1157.8(7.8]8.3|10.2[10.9111.7( 54.8 | 43.8 [35.2| 33.4 | 30 | 1670 | 2
M-Ap 3 [375]90(155]62.1]78.9(184.2188.5(93.2]9.7 13%' 14.9| 17 |18.6]| 88.9 | 85.1 |64.2| 50.1 | 38 | 1850 | 3

M-L | 4 [370]105{160(46.5]59.3161.2162.3162.5(8.8(9.3] 9.4 1 9.5]9.5] 352 | 17.5|13.1| 128 | 7 |1230 1

M-T 1 [270]100{300| 48 |49.3]|53.6]165.2|71.3]18.2|8.2| 8.5 ] 9.4 |12.9] 67.5 | 62.3 |55.2| 53.2 | 13 | 1380 | 2

M-cs | 3 |300]180)255)23.5(35.1(49.2(55.5(63.8(5.1(5.5( 6.3 {10.5{11.8 55 [ 20.6 [17.1f 16.5 9 (1200 2

3.2. Cluster analyses of experimental mortars

A dendrogram of experimental mortars using complete linkage as an amalgamation
rule and the city block (Manhattan) distance as a measure of the nearness among samples is
illustrated in Fig. 2.

The dendrogram built on the experimental data explained appropriate distinctiveness
between samples. There are three clusters of samples. As presented in Fig. 2, there is high
resemblance between M-OPC, M-HSCR, M-MHHC, M-HESC, and M-LHHC mortars. Only
mortars based on masonry cements are in this cluster. This group of samples that shapes the
first cluster is described by the most notable IST and FST values, as well as high early and
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final compressive (CCS-3, CCS-7, CCS-14, CCS-21, CCS-28) and flexural strengths (CFS-3,
CFS-7, CFS-14, CFS-21, CFS-28). Altered mortars with addition of copper slag, limestone,
and talc (M-CS, M-L, M-T) are conjoined in this cluster due to the similarity in the observed
outputs (high IST, FST, CCS, and CFS).

The second cluster associated the following altered mortars: M-FA, M-MS, M-SF, M-
BA, M-Z, M-B, M-Py, M-Kc, M-Pr, and M-V. The class of mortar samples that pertains to
the second cluster exhibited values of variables that were slightly below values displayed for
cement mortars from the first cluster. This was expected because mineral raw materials
employed in the design of mortars as a cement replacement tend to deteriorate performances
of mortar at least to a certain extent. However, here it was showed (Table. 11, Fig. 2) that the
application of economical primary and/or secondary mineral additives such as fly ash, bottom
ash, zeolite, bentonite, perlite, vermiculite, pyrophyllite, micro silica, silica fume, and kaolin
clay induce comparatively good physico-mechanical and thermo-mechanical properties of
mortars. Namely, this cluster is directly connected to first cluster indicating strong similarities
between standard cement mortars and altered mortars based on additives of primary and
secondary origin. The given group of mortars is depicted by high compressive and flexural
strengths, with accent on towering late CCS-28 and FCS-28 strengths. Even though altered
mortars from cluster two are classified as masonry mortars, they also exhibit excellent thermal
properties such as high refractoriness and relatively high hot compressive strengths (which
grouped them together in cluster two and distinguished them from standard masonry mortars
from cluster one).

The remaining mortar samples (M-CAC, M-HAC, M-CG, M-Cc, M-Sp, and M-Ap)
represent the third cluster since all of the samples are depicted by high values of HH, SR, SK-
T, SK, HCS-100, HCS-500, HCS-800, and HCS-1000. The cement mortars that also belong
to this group i.e., cluster three, are high-temperature resistant mortars based on calcium-
aluminate and high-aluminate cement (M-CAC and M-HAC). Mineral additives such as
spinel, chamotte, calcinated clay, and alumina can be considered as appropriate for high-
temperature applications since they induced high hot compressive strengths in observed
mortar samples.

Complete Linkage 1
City-block (Manhattan) distances]

M-OPC
M-HSCR
M-MHHC
M-CS
M-HESC

I

EJ_
M-BA ]:l_

Mortar

0 200 400 600 800 1000 1200 1400 1600
Linkage Distance

Fig. 2. Complete-linkage dendrogram of cement mortars and altered mortars.
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3.3. Principal component analysis (PCA) of outputs

The PCA permitted an extensive depletion in a number of variables and the
uncovering of structure in the association between measured parameters and chosen outputs
(Fig. 3). As can be seen, there is a clean segregation of the 24 trials. Quality outcomes show
that the first two principal components, accounting for 81.78 % of the total variability can be
considered sufficient for data representation. Variables CCS-3, CCS-7, CCS-14, CCS-21,
CCS-28, CFS-3, CFS-7, CFS-14, CFS-21, CFS-28, and HCS-100, HCS-500, HCS-800, HCS-
1000 supplied the most negatively to the first principal component estimation (4.2-6.3 % of
total variance, based on correlation). The most positive impact to the second principal
component was identified for PA (22.2 %) and HH (8.2 %), while the most negative effect to
the second principal component was esteemed for HCS-500, HCS-800 and HCS-1000 (5.6,
8.4 and 12.6 %, accordingly) and FST (5.1 %).

The effects of processing parameters are illustrated in Fig. 3, with higher IST and
FST values at the right side of graphic, while the more HH, SR, SK, SK-t, CCS-7, CCS-14,
CCS-21, CCS-28; CFS-3, CFS-7, CFS-14, CFS-21, CFS-28, HCS-100, HCS-500, HCS-800,
and HCS-1000 values are discovered at the left side of graphic. This is in agreement with
Cluster Analysis. Namely, M-OPC, M-HSCR, M-MHHC, M-HESC, M-LHHC, M-CS, M-L,
and M-T located on the right side of the graph showed the highest IST and FST values (also
situated on the right side of PCA biplot). M-T sample is set somewhat apart from this group
because it showed slight difference in the observed characteristics i.e., higher value of final
setting time. M-FA, M-MS, M-SF, M-BA, M-Z, M-B, M-Py, M-Kc, M-Pr, and M-V samples
are grouped around center of the diagram exhibiting good compressive and flexural strengths.
Finally, M-CAC, M-HAC, M-CG, M-Cc, M-Sp, and M-Ap are on the left side of the graph
where the highest cold and hot mechanical strengths are placed. These mortars belong to
group of thermally resistant materials.

PCA graphic explained over-all good discernment attitude between all trials, which
were discovered distinct due to variants in output variables measured in samples.

4
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* ML
[ ]
3
PA
2
M-OPC
& 1 M-MHHC
¢ M-CAC . ]
ham CFS-7cps M-B S
& CCSgFS-%\SCFS 14 1-CS, M-HSCR |
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M-Cc® CCS-28 SR S ]
HCS-10 IST M-LHHC,
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* e  HCS-800 FST
M-Sp R4 M-Py
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Fig. 3. Biplot for mechanical characteristics of cement mortars and altered mortars.
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3.4. Neurons in the ANN hidden layer

Broyden—Fletcher-Goldfarb—Shanno (BFGS) algorithm, conducted in StatSoft
Statistica’s evaluation routine, was used for ANN modeling. The optimum number of hidden
neurons was selected in order to minimize the distinction among expected ANN values and
intended outputs. SOS was applied throughout testing as accomplishment indicator. In line
with ANN performance (sum of r* and SOSs for all variables in one ANN), it was seen that
the optimal number of neurons in the hidden layer is 13 (network MLP 10-13-21), when
obtaining high values of r* (0.999; 0.998 and 0.999 for training, testing and validation
performances, respectively) and also low values of SOS (Table 1V).

Tab. IV ANN summary (performance and errors), for training, testing and validation cycles.

Performance Error
Network Training Test Validation | Training Test Validation
name
0.999 0.998 0.999 15.171 16.254 15.925
MLP 10- Error function Hidden activation Output
13-21 Training algorithm activation
BFGS 724 SOS Logistic Exponential

*Performance term represent the coefficients of determination, while error terms indicate a lack of data for the ANN model.

The ANN model is complex (437 weights-biases) according to the high nonlinearity
of the developed system [42]. The r® values between experimental measurements and ANN
model outputs, PA, HH, IST, FST, CCS-3, CCS-7, CCS-14, CCS-21, CCS-28, CFS-3, CFS-7,
CFS-14, CFS-21, CFS-28, HCS-100, HCS-500, HCS-800, HCS-1000, SK, SK-T, and SR
were between 0.999 and 1.000, during the training period.

Table V presents the elements of matrix W, and vector B, (presented in the bias row),
and Table VI presents the elements of matrix W, and vector B, (bias) for the hidden layer.

Tab. V Elements of matrix W, and vector B, (presented in the bias row).

1 2 3 4 5 6 7 8 9 10 11 12 13
SiO, | -5.773 | 24.537 | -4.817 | -17.630 | -5.157 | 1.446 | 24.942 | 33.087 | 46.500 |-18.701| -6.117 | -3.169 | 9.364

IAIL,O4 -36.026 | -3.678 | -44.286 | -25.270 | -47.336 |-50.056 |-47.296 | 24.828 | -45.254 | -46.460 | -36.108 | -49.299 |-39.618
Fe,O4 8.081 [-34.571| -5.593 | -8.966 32.391 | 11.297 | 15.435 | 21.461 | -28.841 |-10.952 | 9.197 | 39.762 | 6.548
CaO | 51.404 | 8.092 | 20.413 | 20.807 | 20.184 | 23.276 | 30.123 | 34.755 | 34.386 | 40.260 | 81.709 | 36.625 (29.221
MgO | -11.381 | -30.164 | 28.248 | -40.618 | -22.348 | 19.330 |-27.738 | 1.004 | 27.460 | -5.031 | 15.726 |-13.161 |-22.644
K,O | 27.161 |-50.482 | 8.892 | 58.693 | 58.131 | 46.657 | 44.097 | 44.902 | 37.098 | 49.003 | 31.672 | 18.671 |[-13.208
Na,O-21.998 | 3.545 | -1.200 | 7.409 3.199 | -2.838 | 7.452 | 3.363 | -1.004 | 1.889 | 23.565 | 0.474 [-17.092
ITiO, | -9.410 | 3.259 | -5.069 | 11.798 | -13.554 |-56.399 |-33.918 | -9.967 | 8.383 | 1.835 |-21.072|-13.392 |57.132
SO; | 24.166 | 12.892 | 2.166 | -0.507 -9.584 |-15.963 | -4.513 | -7.348 |-23.750 | -1.554 |-68.467 | -3.980 |-4.545
Lol |-25.021 |-33.207 |-22.448 | 43.478 | -15.713 | -1.628 | -3.358 | 0.767 |-44.252| 17.362 |-60.493 | 23.023 | 2.266
Bias | -7.967 | -3.515 | 3.977 | -24.081 | -0.966 |-21.491| -8.036 |-39.231|-20.873|-31.606 |-15.233| 3.201 [-24.058

The quality of the model fit was investigated and the residual analysis of the
established model was exposed in Table VII.

The ANN model had a negligible lack of fit tests, which means the model
satisfactorily predicted the quality of cements and additives. A high r?is illustrative that the
variation was constituent for and that the data fitted the proposed model effectively.
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Tab. VI Elements of matrix W, and vector B, (presented in the bias column).
1 2 3 4 5 6 7 8 9 10 11 12 13 | Bias
PA |-16.278| 30.841 | -91.579 | -26.836 | 34.290 | -39.050 | -2.625 | 2.837 | -1.435 | 13.485 | 43.447 | -6.391 | 62.178 | -0.718
HH | 7.642 | 1.328 | -6.256 | 5.184 | 1.218 | 0422 |-0.278 | 10.393 | 4.280 | 0.563 |-13.942 | -5.958 | -7.818 | 0.015
IST [26.278|-10.519| -9.314 | 1.637 | -3.275 | 9.398 |22.297| 4.859 |12.477| -3.210 | -8.643 | -26.761 | -17.309 | -5.385
FST | 16.086 | -21.088 | 10.330 | -6.920 | -18.984 | 7.324 |44.644| -0.510 | 1.380 | 0.951 | 14.475 | -28.205 | -19.586 |-11.890
gcs- 8496 | 2.477 |-12.742|-11.334 | 6.445 | 19.436 | -1.658 | 12.162 | 8.201 | 3.720 |-19.581 | -9.451 | 13.040 | 0.003
‘7:‘35' 2316 | 3.027 |-13.497 |-31.707 | 16.392 | 33.947 | -2.457 | -8.960 | 4.307 | 12.207 | -7.321 | -3.008 | 30.616 | -0.002
ffs' 7.021 | 1.669 |-10.723| -4.697 | 8342 | 9.182 |-2.202| 8.123 | 8.349 | 0.385 |-14.895| -8.494 | 7.872 |-0.008
(Z:fs' 7719 | 1.231 |-10.197| -0.980 | 13.039 | 2.045 |-3.367 | 4.002 | 9.832 | -1.060 |-14.152 | -8.756 | 4.977 | 0.004
SSCS' 6.725 | 1.061 |-10.107| -3537 | 12.992 | 3.356 |-2.894| 3.636 | 9.512 | -1.056 |-12.573 | -8.917 | 8.864 | 0.003
gFS‘ 20.003| 2.409 | -3.139 | 25.217 |-21.643 | -11.100 | -0.187 | 51.599 | 6.867 |-11.555 | -33.185 | -12.761 | -16.886 | -0.027
?FS‘ 20.821| 2.658 | -4.677 | 25.182 |-20.467 | -10.897 | -1.305 | 51.749 | 7.938 |-11.722 | -33.829 | -13.033 | -16.336 | -0.031
&FS' 20.445 | 2.638 | -3.253 | 28.772 | -23.463 | -15.806 | -1.402 | 55.909 | 7.320 |-12.099 | -35.106 | -12.875 | -19.675 | -0.038
glFS' 0450 | 1.608 | -4.337 | -5.257 | 4224 | 0.088 |-3.086| 6.178 | 3.286 | -0.219 | -6.455 | -2.558 | 11.470 | -0.014
‘Z:BFS‘ 1783 | 0.964 | -7.136 | -8.844 | 10.049 | 1.841 |-2.635| 3.862 | 6527 | 0262 | -8.669 | -6.133 | 15.713 | -0.011
?(%S'-ls.?oe 2696 | -3.958 | -36.258 | 14.714 | 18.243 | -4.902 | -18.972 | -1.836 | 8.384 | 17.088 | 6.180 |-42.329 | -0.041
?(%S' 1439 | 0121 | -6.061 | -1.955 | 9.259 | -0.942 | -2.781 | -2.315 | 6.303 | 1.168 | -1.539 | -4.302 | -3.829 | -0.022
SOCOS' 8939 | 1.117 | -1.934 |-12.440| 6.951 | 6.482 |-3.896 |-11.499 | -0.324 | 4243 | 8917 | 4.259 |-28.322|-0.021
?&%-22.429 1.946 | -0.663 | -33.039 | 8.306 | 16.169 | -3.848 | -18.843 | -4.269 | 8.603 | 22.935 | 8.840 |-40507|-0.117
SK | 10.854 | -6.497 | -23.241| 6.876 | 27.272 | -9.957 | 4.235 | -3.793 | 26.802 | 0.881 | -9.604 | -29.223 | -12.888 | 0.019
SK-T| 15.922 | -5.234 | -21.741| 8.370 | 24.507 | -5.566 | 3.699 | -0.870 | 24.324 | -0.982 | -15.112 | -26.886 | -7.272 | -0.007
SR |34.723 | 2.047 | -0.880 | -66.442 | -27.336 | 54.253 | 0.778 | 66.151 | 16.327 | -45.476 | -32.347 | -22.889 | 71.610 | 0.005
Tab. VII The "goodness of fit" tests for the developed ANN model.
2 2 Residual analysis
X RMSE MBE MPE r Skewness Kurtosis Average SD
PA 0000 | 0002 | 0000 | 0047 | 1.000 | -1.271 3.054 0.000 0.002
HH 12213 | 1427 | -0007 | 0312 | 0999 | 0845 1979 -0.005 1262
IST 0697 | 0341 | -0.098 | 0248 | 1.000 |  1.307 2.911 20,074 0.292
FST 16437 | 1655 | 0038 | 0503 | 1.000 | -0485 5.355 0.028 1464
CCS3 | 0610 | 0319 | -0012 | 0679 | 1.000 | 1550 5078 -0.009 0.282
CCS7 | 0236 | 0198 | -0010 | 0373 | 1.000 | 0.353 1.703 20.008 0.175
CCS-14 | 1586 | 0514 | -0.008 | 0725 | 0.999 | -0.993 139 20.006 0.455
CCS21 | 0877 | 0382 | 0026 | 0565 | 1.000 | 0137 0.176 20,019 0.338
CCS28 | 1199 | 0447 | 0013 | 0622 | 0.999 | -0.274 0.865 20,010 0.395
CFS3 | 0006 | 0031 | 0000 | 0350 | 1.000 | -0.355 0.011 0.000 0.027
CFS7 | 0011 | 0043 | 0001 | 0406 | 1.000 | -0.374 1837 0.001 0.038
CFS-14 | 0022 | 0061 | -0005 | 0550 | 1.000 | _ 0.622 0.711 -0.004 0.054
CFS21 | 0020 | 0058 | -0002 | 0324 | 1.000 | -0.619 2317 20,001 0.051
CFS28 | 0068 | 0106 | 0003 | 0536 | 0999 |  0.645 2316 0.002 0.094
HCS-100 | 2.830 | 0.687 | -0.014 | 0932 | 0.999 | -0.348 2,692 20011 0.607
HCS500 | 3481 | 0762 | 0028 | 1280 | 0.999 | -0.164 1263 0.021 0.673
HCS800 | 0541 | 0300 | -0.008 | 0.666 | 1.000 | _0.214 1.762 ~0.006 0.266
HCS-1k | 2.605 | 0659 | 0067 | 1620 | 0.098 | 1816 4383 0.051 0.581
SK 1601 | 0531 | 0104 | 2251 | 0.998 |  3.087 13.067 0.078 0.463
SK-T | 107.611 | 5739 | -0169 | 0268 | 0999 | -0.385 2.402 20127 5075
SR 0.000 | 0004 | 0000 | 0138 | 1.000 | -0.252 2.407 0.000 0.004

The mean and the standard deviation of residuals have also been analyzed. The mean
of residuals for ANN model for PA, HH, IST, FST, CCS-3, CCS-7, CCS-14, CCS-21, CCS-
28, CFS-3, CFS-7, CFS-14, CFS-21, CFS-28, HCS-100, HCS-500, HCS-800, HCS-1000, SK,
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SK-T, and SR prediction were: 0.000; -0.005; -0.074; 0.028; -0.009; -0.008; -0.006; -0.019; -
0.010; 0.000; 0.001; -0.004; -0.001; 0.002; -0.011; 0.021; -0.006; 0.051; 0.078; -0.127 and
0.000, respectively, while the standard deviations were: 0.002; 1.262; 0.292; 1.464; 0.282;
0.175; 0.455; 0.338; 0.395; 0.027; 0.038; 0.054; 0.051; 0.094; 0.607; 0.673; 0.266; 0.581;
0.463; 5.075 and 0.004. These results revealed a good estimation to a normal distribution
around zero with a probability of 95% (2+SD), which means a good generalization ability of
ANN model for the range of observed experimental values.

3.5. Sensitivity analysis
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In order to entry the impacts of variations in the outputs in line with the variations in
the inputs, a sensitivity analysis was accomplished. The greater effect recorded in the output
means more augmented sensitivity in respect to the input. The effects of the input factors over
the outputs are expressed in Fig. 4, by evaluated changes in outputs, for infinitesimal changes
in inputs. Acquired values corresponded to degree of experimental errors, and also showed
the inputs influence on outputs.

As it is illustrated in Fig. 4., PA parameter was mostly influenced by CaO. The
changes in the contents of Al,O; and SiO, performed lesser effect on the pozzolanic activity
of a mineral additive. Presence of magnesium and potassium negatively influenced PA.

The heat of hydration (HH) was most significantly influenced by Al,Oz content.
Calcium oxide detected in the observed mineral additives had negative effect on HH. Initial
setting times (IST) were mostly influenced by K,O i.e., altered mortars with most significant
variations in potassium content. Variations in final setting times (FST) were determined
through changes in greater number of oxides: K,0, Al,O3, Ca0, and MgO.

Variations registered for compressive strengths (CCS) showed interesting route over
twenty-eight days period. CCS-3 was strongly influenced by SiO, content (R.I. = 20 %).
CCS-7 was negatively influenced by Al,O; content (R.I = -25%). CCS-14, CCS-21, and CSS-
28 were equally influenced by SiO; (R.l. = 20%), while R.l. of calcium and magnesium
oxides varied from 7 % to 15 % to 10 %, respectively.

Sensitivity analysis diagrams showed no significant difference for flexural strengths
up to 14™ day of testing. CFS-3, CFS-7, and CFS-14 were mostly influenced by Al,O; (R.I.
being approximately 25 %), followed by SiO, (R.l. = 10 %). CFS-21 and CFS-28 were mostly
influenced by alternations in SiO, content (R.I. = 20 %).

Hot compressive strength measured upon firing at 100°C was strongly influenced by
variation of MgO content (R.l. = 22 %). Variations in Lol had the strongest negative influence
on this parameter (R.l. = -18 %). Variations in CaO (R.l. = -18 %), TiO, (R.l. = 19%) and Lol
(R.I. =-10 %) exhibited the strongest influence over HCS-500 strength. HCS-800 was
determined by variations in SiO, (R.I. = -10 %), Al,O; (R.l1 = 5 %), CaO (R.I. = -12 %), MgO
(R. 1. =19 %), TiO, (R.l. = 17 %), and Lol (R.I = 13 %). HCS-1000 was similarly influenced
by variations of the same oxides: SiO, (R.l. = -7 %), Al,O3 (R.I = 3 %), CaO (R.l. = -6 %),
MgO (R. I. = 21 %), TiO; (R.I. = 17 %), and Lol (R.I = 17 %).

Variations of Fe,O; and K,O performed the strongest influence over refractoriness.
Sulphate resistance of observed mortar samples was affected by variations in SiO,, Al,Os,
K,0, SO; and Lol contents.

4. Conclusion

Analytical analyses and Acrtificial neural network (ANN) modeling were employed to
foresee the quality of mortars designed on given seven types of cement and seventeen mineral
additives. The impacts that chemical compositions of implemented raw materials are making
on the quality (properties) of the designed mortars were assessed and evaluated.

The CA dendrogram built on the experimental data and PCA biplot explained
appropriate distinctiveness between samples by creating three groups of mortars. The first
group associated mortars based on masonry cements due to high early and final compressive
and flexural strengths. Altered mortars with addition of copper slag, limestone, and talc were
conjoined in this cluster due to the similarity in setting times. The second group distinguished
and separated altered mortars (M-FA, M-MS, M-SF, M-BA, M-Z, M-B, M-Py, M-Kc, M-Pr,
and M-V). The second cluster was directly connected to first cluster indicating strong
similarities between standard cement mortars and altered mortars based on mineral additives
of primary and secondary origin. The given group of mortars is depicted by high compressive
and flexural strengths, but also excellent thermal properties (refractoriness and hot
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compressive strength). The remaining mortar samples (mortars based on calcium-aluminate
and high-aluminate cement, and mortars altered by addition of spinel, chamotte, calcinated
clay, and alumina) represent the third cluster which is depicted by high values of hot
compressive strength, refractories, and sulphate resistance.

Impacts of variations in the outputs in line with the variations in the inputs were
determined via sensitivity analysis. Variations in CaO conveyed the greatest influence on
pozzolanic activity. The heat of hydration was influenced by Al,O; content. Setting times
were mostly influenced by K,O. Early and final compressive strengths were positively
influenced by SiO,. Only compressive strength measured after seven days was negatively
influenced by Al,O; content. Early flexural strengths were influenced by Al,Os, while final
strengths were mostly influenced by alternations in SiO, content. Hot compressive strength
(100°C) was influenced by variation of MgO content. Compressive strength (1000°C) was
additionally influenced by variations in the SiO,, Al,Oz, Ca0, and TiO,. Variations of Fe,0O3
and K,O performed the strongest influence over refractoriness. Sulphate resistance of
observed mortar samples was affected by variations in SiO,, Al,O3; K,0O, SO; and Lol
contents.

The obtained ANN outputs highlight the high suitability level of anticipation, i.e.,
0.999 during the training period, which can be regarded appropriately enough to correctly
predict the observed outputs in a wide range of experimental parameters. The developed ANN
model displays high predictive accuracy and can replace or be used in combination with
standard destructive tests thereby saving the construction industry time, resources, and capital.
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Caxcemax: [Ipedsulare nepghopmancu epahesunckux mamepujana a mume u ONMUMUIAYUja
PUXOBUX cacmasa Kopuuihervem Mooena 3a MAWUHCKO YuYelbd je eceHyujanHu 0eo
caspemenoz epahesunapcmea. Y 06om pady je cnpoeedena npocHO3A NOHAULAA MATMepa
3ACHOBAHA HA NPUMEHU MOOeNd 8eumadkux Heypouckux mpesca (AHH). JJobujenu mooen ce
ynompebO.pasa 3a npoyeHy Ou3ajHa u Kapakmepucmuka ce0amHaecm 2epahesuHcKux unu
sucoxo-memnepamypHux manrmepa. llpumerseno je cedam epcma yemenma. Cedammaecm
MUHEPATHUX AOUMUBA NPUMAPHOZ U CEKYHOAPHO2 NOPeKIa ynompeosene Cy y MAlmepHum
Mewasunama. Ananuza Kiacmepa U AMAIU3A 2NAGHUX KOMNOHEHMU O3Hauujie cy epyne
CIUYHUX MATIMePA YUuju €y cacmae u C60jCcmea usmerbeHu ynompebom MUHepatHux aoumused u
epynucane ux npema CneyupuUUHOCMU HAMeHe HA OCHO8Y PA3MAMPAHUX KAPAKMEPUCTIUKA.
Mooen gewmaukux HeyPOHCKUX Mpedica je kopuuthen 3a npedguliarve Keanumema Maimepa.
IIpoyerenu cy u NPoSHO3UpaAHYU YIMUYAju Koje XeMUujcKu Cacmas CUposura uma Ha Keaiumem
manmepa. Jlooujenu AHH uznasu umajy eucox nuso anmuyunayuje - 0,999 moxom nepuooa
00yKe, WMo ce modice cmampamu 3a0080m6asajyhie 3a npeyusno npedsularbe pesyimama y
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wupoxom oncezy npoyecnux napamemapa. Pazeujenu AHH mooen nokasyje 6ucoky maunocm
npedsuhara u Moxce 0a 3aMeHU UMU Od ce KOPUCTU V KOMOUHAYUWU ca CMAHOAPOHUM
0eCmpYKMUGHUM MECMOoGUMA YuMe ce wmeou epeme, pecypcu U Kanuman y epahesunckoj
unoycmpuju. Jlobpe nepgpopmance excnepumMeHmanrHux yeMeHmHux maimepa cy no3umuean
3HAK V CMUCTY WUPera HpPaKce NPUMEHe eKOHOMUYHUX MUHEPATHUX aoumuea y
2pahesuncKuM Mamepujanuma u noOCMmu3ara CMarberbd emucuje yebeH OUoKCUod.

Kuyune peuu: ['pahesuncku yemenmu,; GUCOKO-MEMNEPAMYPHU YEMEHMU, UHOYCPUjCKU
HYCHPOU3800U; eKOHOMUYHE NPUMAPHE CUPOSUHEe, YUPKYIAPHA eKOHOMUJA.
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