Chemometric Analysis of Alternations in Coal Ash Quality Induced by Application of Different Mechano-chemical Processing Parameters

  • Anja Terzić Institute for Testing of Materials IMS
  • Lato Pezo Institute of General and Physical Chemistry, University of Belgrade
  • Ljubiša Andrić Institute for Technology of Nuclear and other Raw Mineral Materials


The coal fly ash mechano-chemical activation conducted via high energy ultra-centrifugal mill was optimized using mathematical and statistical tools. The aim of the investigation was to accent the merits of alternations in ash processing schemes with a referral regarding the enhancement of the ash reactivity that will lead to its higher volume utilization as a cement replacement in concrete design. The impact of the processing parameters sets (number of rotor revolutions, current intensity, activation period, circumferential rotor speed, mill capacity) on the on the product’s quality factors (grain size distribution, average grain size, micronization level, agglomeration tendency, specific surface area) was assessed via Response surface method, Standard score analysis and Principal component analysis in order to obtain the most favorable output. Developed models were able to meticulously predict quality parametersin an extensive range of processing parameters. The calculated r2 values were in the range of 0.846-0.999. The optimal ash sample, that reached the Standard Score as high as 0.93, was produced using a set of processing parameters appropriate to experimental sequence with applied 120 μm sieve mesh. The microstructural characteristics were assessed using image-processing values and histogram plots of the activated fly ash SEM images.