Electrical Properties of Magnesium Titanate Ceramics Post-Sintered by Hot Isostatic Pressing
Abstract
Post-sintering of magnesium titanate ceramics by hot isostatic pressing (HIP) in an oxygen-free atmosphere significantly alters various electrical properties of the product. In particular, the sintered material becomes a semiconductor. The aims of this paper are: to extend our investigations of the electrical properties of this material by expanding the frequency range of measurements, to design interpolation formulas for the frequency dependence of the complex relative permittivity, and to propose HIP-sintered magnesium titanate as a material for thermistors that have a negative-temperature-coefficient resistance (NTCR), as well as for varistors.