Study of Nanosized Hydroxyapatite Material Annealing at Different Retention Times

  • Miljana Mirković Department of Material Science, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade
  • Ljiljana Kljajević Zaid Department of Material Science, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade
  • Suzana Filipović Institute of technical sciences of the Serbian Academy of Science and Arts
  • Vladimir Pavlović Faculty of Agriculture, University of Belgrade
  • Snežana Nenadović Department of Material Science, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade

Abstract

The aim of the study was to investigate the influence of low heating temperatures with two different retention times to optimize the process for obtaining nanosized hydroxyapatite material that can possibly be used in the fields of biology and pharmacy. Nanosized hydroxyapatite was successfully obtained by wet chemical precipitation. The annealing of the material performed at 300 oC with two different retention times i.e. 3 and 6 hours in air atmosphere. Low annealing temperature with extended retention time was selected in terms to reduce energy consumption. FTIR spectroscopy was used to confirm characteristic vibrational bands of hydroxyapatite samples, and presence of carbonate bands of hydroxyapatite annealed for 3h and 6h. X-Ray powder diffraction analysis were used to examine phase composition, determine the size of unit cells and crystallite sizes, and SEMEDS methods were used to obtain particle size and arrangement also grain growth morphology and confirmed the presence of calcium, phosphorous oxygen and carbonate peaks. The results show that different retention time has influence on particle growth as well as unit cell parameters and crystallite sizes changes of hydroxyapatite material.

Published
2020-11-15
Section
Articles